IAN STEWART

l"”. TBANRGN

sV I S

Eone ::-.."1.94;‘}. [\
L4




Cows in the Maze

Ian Stewart is Emeritus Professor of Mathematics at Warwick University. An
active research mathematician, he is also a world renowned popular writer of
mathematics. His many books include Professor Stewart’s Cabinet of Mathematical
Curiosities, How to Cut a Cake, From Here to Infinity, What Shape Is a Snowflake? and The
Science of Discworld and The Science of Discworld IT (both with Terry Pratchett and
Jack Cohen).



BY THE SAME AUTHOR

Concepts of Modern Mathematics
Game, Set, and Math
The Problems of Mathematics
Does God Play Dice?

Another Fine Math You've Got Me Into
Fearful Symmetry (with Martin Golubitsky)
Nature’s Numbers
From Here to Infinity
The Magical Maze
Life’s Other Secret
Flatterland
What Shape is a Snowflake?

The Annotated Flatland
Math Hysteria
The Mayor of Uglyville’s Dilemma
Letters to a Young Mathematician
Why Beauty is Truth
How to Cut a Cake
Taming the Infinite [ The Story of Mathematics
Professor Stewart’s Cabinet of Mathematical Curiosities
Professor Stewart’s Hoard of Mathematical Treasures

WITH TERRY PRATCHETT AND JACK COHEN

The Science of Discworld
The Science of Discworld II: The Globe
The Science of Discworld III: Darwin’s Watch

WITH JACK COHEN

The Collapse of Chaos
Figments of Reality
Evolving the Alien | What Does a Martian Look Like?
Wheelers (science fiction)
Heaven (science fiction)



Cows In
the Maze

IAN STEWART

SSSSSSSSSSSSSSS



OXFORD

UNIVERSITY PRESS
Great Clarendon Street, Oxford 0x2 6Dp
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in
Oxford New York
Auckland Cape Town Dares Salaam Hong Kong Karachi
Kuala Lumpur Madrid Melbourne Mexico City Nairobi
New Delhi Shanghai Taipei Toronto
With offices in
Argentina Austria Brazil Chile CzechRepublic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Joat Enterprises 2010

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2010

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,
or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction
outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

British Library Cataloguing in Publication Data
Data available
Library of Congress Cataloging in Publication Data

Data available

Typeset by SPI Publisher Services, Pondicherry, India
Printed in Great Britain
on acid-free paper by
Clays Ltd., St Ives Plc

ISBN 978-0-19-956207-7

13579108642



Contents

Introduction

Figure Acknowledgements

N OO o AW =

10
1
12
13
14

The Lore and Lure of Dice
Pursuing Polygonal Privacy
Making Winning Connections
Jumping Champions

Walking with Quadrupeds
Tiling Space with Knots

Forward to the Future 1:
Trapped in Time!

Forward to the Future 2:
Holes: Black, White, and Worm

Forward to the Future 3:

Back to the Past, with Interest...

Cone with a Twist

What Shape is a Teardrop?
The Interrogator’s Fallacy
Cows in the Maze

Knight’s Tours on Rectangles

vii

xiii

17
27
39
53
71

83

99

115
135
145
161
179
195



Vi | CONTENTS

15 Cat’s Cradle Calculus Challenge

16 Glass Klein Bottles

17 Cementing Relationships

18 Knotting Ventured, Knotting Gained
19 Most-Perfect Magic Squares

20 It Can't be Done!

21 Dances with Dodecahedra

Further Reading

Index

207
219
231
243
255

269

279

289
297



Introduction

The cows are back.

If you're new to this game, or haven't been paying atten-
tion, Cows in the Maze is Oxford University Press’s third collec-
tion of my Mathematical Recreations columns from Scientific
American and its French edition Pour La Science. The French
edition typically contains its own special material, and for a
time [ wrote six columns a year for the American edition and
another six for the French. And there are two earlier collec-
tions from other publishers.

Oh yes, those cows.

When we were putting together Oxford University Press’s
first collection, Math Hysteria, the editors decided to make the
book seem even more friendly by providing cartoons for
each chapter, and of course the cover. In a stroke of genius,
they decided to ask Spike Gerrell. One of the chapters was on
‘counting the cattle of the Sun’, a fiendishly complicated
puzzle whose answer has 206,545 digits and was first discov-
ered in 1880. There are reasons to believe that perhaps
Archimedes had not intended it to be that fiendish...but you
can never tell with Archimedes.

Anyway, Spike seized upon this hint of a cow-y theme,
because he does particularly comely cows. On the cover,
one was jumping over the Moon, and three were wearing
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blindfolds — well, hoods, actually. If you look at the book’s
spine you will see one cow peeping round the corner at you.

The next collection, How to Cut a Cake, was a cow-free zone,
though Spike did come up with some chessboard horses, an
entangled cat — in a phone cord, not related to Schrodinger
oranything quantum —and a bemused rabbit. The opportun-
ity to compensate the cows for this injustice presented itself
when we decided to put together another collection, and one
of the possible topics was Cows in the Maze. Saved us the
trouble of thinking of a title, too.

Now, you may have thought that mathematics is a pretty
serious business, and a herd of cows rampaging through a
maze, watched by a gang of engineers who are either building
the maze or demolishing it, lacks the proper gravitas. But, as
I've said many times now, ‘serious’ need not equate to ‘solemn’.
Mathematics is indeed a serious business: our civilization
could not possibly function without it — an aspect of the
subject that admittedly is news to many, but easy enough to
prove to anyone who wants to know. For that reason, math-
ematics is so serious that we all need to chill out a bit, and
stop getting so uptight about decimal points and fractions
and parallelograms (do they do those nowadays?) that we
conceal the great secret that makes the whole subject much
more palatable.

Namely: it’s fun.

Even the serious stuff is fun, in a serious kind of way.
Hardly anything can beat that amazing feeling when the
little light bulb in your head goes off and you suddenly
understand what makes a piece of mathematics tick. Math-
ematical research —a big part of my job when I'm not writing
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books — consists of 99% banging your head against a meta-
phorical brick wall, and 1% suddenly realizing why it’s all
totally obvious and you've been extraordinarily stupid. Flash!
goes the light bulb, and you shrug off the feeling of foolish-
ness on the grounds that 99.99% of the human race wouldn’t
understand the problem, let alone the answer, and mathem-
atics always looks easy once you've understood it.

One of the reasons I became a mathematician was the
monthly mathematics column in Scientific American — then
titled ‘Mathematical Games” and written by the inimitable
Martin Gardner. Gardner wasn’t a mathematician, but it
would be too limiting to call him a journalist. He’s a writer,
whose interests include puzzles, magic (of the stage variety),
philosophy, and exposing the idiocies of pseudo-science. His
Mathematical Games column worked precisely because he
wasn't a mathematician, but he had an uncanny instinct for
the interesting, the curious, and the significant. He is an
impossible act to follow, and I've never tried to do that. But it
was Gardner who showed me that mathematics is much
broader and richer than anything I'd been exposed to at
school.

I'm not complaining about school maths. I had a series of
excellent teachers, one of whom — his name was Gordon
Radford — used up most of his spare time teaching me and a
few friends the same lesson that I was getting from Gardner:
there’s a lot more to maths than the textbooks lead you to
assume. School gave me the technique, but Gardner gave me
the passion. In her autobiography, To Talk of Many Things,
Dame Kathleen Ollerenshaw — one of Britain’s truly great
mathematics educators — recounts an incident when she was
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at school, and let slip her hope of discovering some new
mathematics. One of her fellow students expressed a contrary
opinion: why bother, when there was already too much of it?
I side with Dame Kathleen. In fact, one chapter shows that
her ambition was fulfilled, even though her career track went
into education and local government. She was 82 years old at
the time, and that was ten years ago.

Cows in the Maze can be read in any order: each chapter
stands alone, and you can skip anything that bothers you.
(Here’s another great mathematical secret, which I was fortu-
nate to learn at an early age: don’t get hung up on difficult
details, plough ahead anyway. Often light then dawns, and if
not, you can always go back and try again.) The only excep-
tion is a series of three chapters (originally two columns, but
one was gigantic so [ split it) on the mathematics of time
travel.

The topics are diverse — it’s not a textbook, it’s a celebra-
tion of the joy of mathematical investigation and discovery.
Some chapters are in ‘story’ format, others are straight
descriptions. I had to stop presenting the column in story
format when my space in the American magazine was cut
from three pages to two. The French continued to indulge
my sense of narrative, every alternate month when there
wasn't an American column, until the Americans let me
write a column every month. And, cows notwithstanding,
the discerning reader will find a great diversity of genuine
mathematics scattered through these pages: number theory,
geometry, topology, probability, combinatorics...and several
areas of applied mathematics, including fluid mechanics,
mathematical physics, and animal locomotion.
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The columns benefited from a lively correspondence with
readers, and by the end they were providing about half of the
ideas for topics. We started a ‘Feedback’ section, and I've
included readers’ suggestions in most chapters. I've tried to
preserve the feel of the originals, while bringing them up to
date and removing any errors or ambiguities that I know
about. I've also introduced a new feature to reflect the
increasing influence of the Internet: references to interesting
websites.

[ am grateful to my editor Latha Menon and everyone else
at OUP who let themselves be persuaded to sanction my
further romps with Spike’s cows, to Spike for a cow-
bedecked cover, to Philippe Boulanger who started it all by
letting me loose between the covers of Pour La Science, and to
Scientific American for helping me to fulfil a childhood
dream.

Coventry, September 2009 [an Stewart
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The Lore and
Lure of Dice

Dice...They seem such simple things,
just cubes with numbers on them. The
ancients used them for gambling, and for
divining the will of the gods. The math-
ematics of dice is more recent, part of a
wider understanding that chance has its
own patterns. If you know how to look
for them.



HE DIE, more commonly known by its plural ‘dice’,

is one of the earliest known gambling aids. The

Roman historian Herodotus claimed that dice were

introduced by the Lydians in the time of King Atys,
but Sophocles disagreed, crediting their invention to a Greek
called Palamedes, allegedly during the siege of Troy. It may
seem plausible that dice were invented to give the bored
besiegers something to do while they waited for the Trojans
to surrender, but the credit must go to others. Dice have
been found in Chinese remains from about 600 BC. Archae-
ologists have discovered cubical dice, to all intents and
purposes just like today’s, in Egyptian tombs dating from
2000 BC. Other finds go back to 6000 Bc. Dice seem to be
one of those basic forms that originated independently in
many different cultures. The cubical shape, however, is not
unique. Dice of many shapes and with many strange mark-
ings have been used by North American Indians, South
American cultures such as the Aztecs and Mayas, Polynes-
ians, Inuits, and many African tribes. They have been made
from materials ranging from beaver teeth to porcelain.
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The game of dungeons and dragons uses dice shaped like
regular solids.

Dice are such simple things, but their possibilities are
almost endless.

To stop this chapter taking over the whole book, I'm going
to focus exclusively on standard, modern dice. These are, of
course, cubical in shape, and usually have rounded edges and
corners. Their key feature is a pattern of spots on each face,
the numbers of spots being 1, 2, 3, 4, 5, and 6. Spots on oppo-
site faces sum to 7, so the faces come in three pairs:1and 6, 2
and 5, 3 and 4. Up to rotations of the cube, there are exactly
two possible arrangements with this property (Figure 1), and
one is the mirror image of the other. Nowadays virtually all
dice of western manufacture are like Figure 1a, in which the
faces 1, 2, 3 cycle round their common vertex in the anti-
clockwise direction. I am told that in Japan, dice with this
handedness are used in all games except Mah-Jong, where
mirror-image dice of Figure 1b are used instead. Oriental
dice have a much larger spot for the number 1, and some
spots may be red instead of black, depending on the culture.

() (b)

FIG 1 The two different ways to number dice.
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Dice are often thrown in pairs, and a fundamental fact
here is the probability of getting a given total. To calculate
these probabilities — on the assumption that the dice are ‘fair’,
meaning that each face has a probability 1/6 of coming up on
top — we work out how many ways there are to achieve a
given total. Then we divide that by 36, the total number of
pairs, taking into account which die is which. To do this it
helps to imagine that one die is red and the other blue. Then
a total of 12, say, can occur in only one way: red die = 6, blue
die = 6. The probability of a total of 12 is therefore 1/36. A total
of 11, on the other hand, can occur in two ways: red die = 6,
blue die =5, or red die = 5, blue die = 6. Its probability is there-
fore 2/36 =1/18.

This may seem obvious, but dice are usually indistin-
guishable, and colouring them is a bit artificial. As illus-
trious a thinker as the great mathematician and philosopher
Gottfried Leibniz thought that the probabilities of throwing
11 and 12 must be the same. He argued that there is only one
way to throw 11: one die = 6, the other = 5. There are several
problems with this line of attack, however. Perhaps the most
significant is that it disagrees wildly with experiment, in
which 11 comes up about twice as often as 12. Another is that
it leads to the unlikely conclusion that the probability that
two dice throw some total (whatever it may be) is less
than one. Or, if you don’t like that interpretation, it implies
that the probability of throwing 12 is bigger than 1/36.

Figure 2 shows the probabilities for all totals from 2 to 12.
One game in which an intuitive feel for these probabilities is
crucial is craps, which dates from the 1890s. Here one player,
the shooter, puts up a sum of money. The others ‘fade’ it — that
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136 [1][1]

2/36

336 [1][8] [2][2] [3)[]

436 [1][4] [2][B] [3][2] [+][]

s6 [1][5] 21041 [3)[B] [«][2] (][]
636 [1][6] [2][5] [3][&] [+JB] [5][2] [6][A]
si36 [2][6] [31[5] [4][4] [s][3] [¢][2]
436 [3][6] [4][5] [5][4] [6][3]

336 [4][6] [5][5] [6][4]

2136 [5][8] [6][5]

136 [6][6]

FIG 2 The probabilities of totals for two dice.

is, they bet an amount of their own choice. If the total faded
is less than the shooter’s initial bet, then the shooter reduces
the bet to match that total. The shooter then rolls the dice.
A score of 7 or 11 (natural) on the first roll wins outright; a
score of 2 (snake eyes), 3, or 12 (craps) loses. Otherwise the
shooter’s initial score, one of the numbers 4, 5, 6, 8, 9, 10,
becomes his ‘point’. He continues to roll, aiming to score the
point again before he throws 7 (craps out). If he succeeds, he
wins all the money; if he fails, he loses.

From Figure 2 and a few other considerations it can be
calculated that the shooter’s chance of winning is 244/495,
roughly 49.3%. This is just less than evens (50%). Professional
gamblers can turn this slight disadvantage into an advantage
by two methods. One is to accept or reject various ‘side-bets’
with other players, exploiting superior knowledge of the
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odds. The other is to cheat, using sleight of hand to introduce
rigged dice into the game.

Dice can be rigged in several ways. Their faces may be
subtly shaved so that their corners are not right angles, or
they can be ‘loaded’ with weights. Both of these techniques
make some throws more probable than others. More drastic-
ally, the standard dice may be replaced by ‘tops’: rigged dice
that come in several varieties. For example, the die may bear
only three distinct numbers of spots, with opposite faces
having identical numbers. Figure 3 shows an example with
the faces 1, 3, 5 only. Because each player sees at most three
faces of a die at any given instant, and because no two adja-
cent faces of tops have the same number of spots, nothing
appears amiss to a cursory glance. However, it is not possible
to ensure that the arrangements at all vertices cycle in the
‘correct’ order. Indeed, if the orderis 135 anticlockwise around
one vertex, then it must be 135 clockwise around an adjacent
vertex, as Figure 3 shows. So an alert player can detect the
subterfuge.

Tops can be used in craps for several purposes. A pair of
1358, for instance, can never throw 7, so with these a player can

FIG 3 ‘Tops’—how to cheat.



THE LORE AND LURE OF DICE | 7

never crap out. A combination of one 135 and one 246 cannot
produce an even total, so with these dice, a player cannot
make a point of 4, 6, 8, or 10. Tops must be used sparingly if
their presence is to be undetected — even the most naive of
players will eventually start to wonder why they keep throwing
odd totals. So the rigged dice are usually switched rapidly in
and out, to change the odds just a little in the favoured direc-
tion. There are also ‘one-way tops’ in which only one number
of spots occurs twice. Instant recognition of the arrangement
of the spots on a die is essential knowledge for professional
gamblers, because it can help them detect tops.

Many conjuring or party tricks use dice. A lot of them are
based on the rule that opposite faces sum to 7. Martin Gardner
describes one of them in his Mathematical Magic Show. The
magician turns her back and asks a member of the audience
to roll three standard dice and add up the top faces. Then the
victim is told to pick up any die and add its bottom number
to the total. Finally, the victim rolls the same die again and
adds its top number to the previous total. Now the magician
turns round and immediately states what the result was —
even though she has no idea which die was chosen.

How does this work? Suppose that the dice have totals a, b,
and ¢, and that (say) die a is chosen. The initial total is a + b
+ ¢. To this is added 7 — a, making b + ¢ + 7. Then a is thrown
again, giving d, and the final result is d + b + ¢ + 7. The magi-
cian then looks at the three dice, which total d + b + ¢ — so all
she has to do is quickly add them up, and add 7.

Henry Ernest Dudeney, the great English puzzlist, includes
a trick of a different kind in his book Amusements in Math-
ematics. Again the magician asks for three dice to be thrown
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while her back is turned. This time the victim is asked to
double the value of the first die and add 5; then multiply the
result by 5 and add the value of the second die; then multiply
the result by 10 and add the value of the third die. Upon being
told the result, the magician immediately says what the three
dice were. The result, of course, is now 10(5(2a + 5) + b) + ¢,
or 1004 + 10b + ¢ + 250. So the magician subtracts 250 from
the result, and the three digits of the answer are the numbers
on the dice.

Games with dice need not involve any random element.
One such game begins by one player choosing a ‘target’
number, such as 40. The other player places a single die on
the table, with some chosen face on top — say 3. This value
starts a running total. The other player may now roll the die
through a quarter turn — which here reveals either 1, 2, 5, or
6. Whatever comes up top is added to the running total. If,
for instance, the second player turns the die to show 2, then
the running total becomes 3 + 2 = 5. The players take turns to
roll the die through a quarter turn, in whatever direction
they wish, and the running total accumulates. The first player
to make the running total bigger than the target loses.

There is a systematic method for analysing such games,
explained in detail in my book Another Fine Math You've Got
Me Into. The idea is to divide positions of the game into two
classes, ‘win’ and ‘lose’, and work backwards from the end,
using the following two principles:

e If any move from the current position leads to a
winning position (for the other player) then the
current position is a losing one.
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o If some move from the current position leads to a
losing position (for the other player) then the current
position is a winning one.

For instance, if the current running total is 39 and face 1 is
uppermost, then the next player has no choice but to exceed
40, so this position is a winning one. In order actually to win,
you have to play the appropriate move.

In carrying out this calculation, it is best to work with the
difference between the current total and the target — that is,
the ‘effective target’ from that stage onwards. In the above
example, the effective target is 40 — 39 =1, and whatever move
the next player makes, they must exceed it. On the other
hand, if face 2 is uppermost when the effective target is 1, then
the next player can turn the die so that 1 is on top, and win.

The table below summarizes the status of various states of
the game, for effective targets between o and 25. Here the
state — the face that is uppermost —is shown at the left of the
rows, the effective total is at the top of the columns, and each
column either shows ‘L’ for a losing position, or a list of
winning moves for a winning position. Notice that states 1
and 6 are in effect the same, since they lead to the same four
possible moves 2, 3, 4, 5. The same goes for states 2/5 and 3/4.
So the table has only three rows.

Effective target

. 12| 3 | 4|5 |67
status:
10r6 L 2 3 4 5 3 1234
20rs5 1 1 3 4 L 36 | 346
30r4 1 12 L L 5 6 26
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Effective target

8| o9 |10|11|12]|13]|14]15]16
status:
10r6 4 L 5 1231341] 4 5 3 1234
20r5 4 | L |1 ]3 (34| 4| L |36]|34
30r4 L|L|15|2|L|L|5]|6]:2
Effective target

17 |18 |19 | 20| 21 | 22 | 23 | 24 | 25
status:
10r6 4 | L | 5123[34| 4|53 [234
20r5 4 | L | 1|3 [34| 4| L |36]|34
3 0r 4 L|L|15]|2]|L|L|5]|6]2

I've laid out the tables to emphasize the main feature:
columns 17—25 are the same as columns 8-16. This pattern,
once it becomes established, must repeat indefinitely, so
columns 26—34, 35—43, 44—52, and so on, are also the same as
8-16. The reason is that any move reduces the effective target
by 6 at most, so the entries in a given column depend only on
those in the six columns to its left. So as soon as a block of six
(or more) consecutive columns repeats entries seen in a
previous block, the pattern must repeat indefinitely.

Such repetitions are to be expected in all games of this
general kind, because there are only finitely many possible
columns. But we're lucky that the repeating block occurs so
soon, and is so short. It leads to a complete, but far from
intuitive, prescription for a winning strategy. Take your
chosen target and repeatedly subtract 9 until you first get
into the range 0—16. Then look in the resulting column to see
whether the position is a win or lose — and if it's a win, play
one of the recommended winning moves.
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For instance, suppose the target is 1000. Subtracting 9s
repeatedly we get down to 19, which is still bigger than 16,
and finally to 10, where we stop. Column 10 tells us that we
can always make a winning move. If the state is 1/6 then we
move the die to show s5; if the state is 2/5 we move it to 1; and
if the state is 3/4 we move it to 1 or 5. Keep repeating this
procedure, and eventually you must win.

If you're unlucky, and the initial position is a losing one,
you have to hope that your opponent doesn’t know the
strategy. Make any move you like, wait till they’ve made
theirs, and repeat the calculation. You should soon hit a
winning position, unless a miracle is in progress, after which
you control the game completely. With a moderately heroic
effort, you can commit the entire table to memory. Or you
can simplify it by remembering only one winning move for
each state, rather than the whole list. In fact, if you do that
intelligently, you can ignore all columns after the eleventh,
reducing the amount to be learned to something fairly
manageable.

Other dice problems involve modified dice with non-
standard numbering. For example: can you think of a way to
label two dice, using only numbers o, 1, 2, 3, 4, 5, or 6, to get
a pair of dice such that all totals from 1 to 12 are equally likely?
(See the end of the chapter for the answer.) Perhaps the most
counter-intuitive dice phenomenon is that of ‘non-transitive
dice’. Make three dice A, B, and C, numbered like this:

A:334488

B:1155909
C:226677
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Then, in the long run, B beats A. In fact, die B throws a higher
total than A with probability 5/9. Similarly C beats B with
probability 5/9. So obviously C beats A, right? No, A beats C
with probability 5/9. The next table justifies these assertions:
it lists the winner for each combination of dice. For example
if Bis playing C, look at the second array in the table. Suppose
B throws 5 and C throws 6. Then C has the higher throw, so
C wins. Therefore column 5, row 6 of the array is C.

Al3|4]|8 Bl1|5]|9 Cla2|6]|7
B C A

1 AlAA |2 | C|B|B |3 ] AlC|C
5| B|B|A | 6 C|C|B 4 AlC|C
9 B|{B|B 7 C|C|B 8 AlAA

In the first array there are 5 Bs and 4 As, so B beats A with
probability 5/9, as I claimed. In the second array there are 5 Cs
and 4 Bs, so C beats B with probability 5/9. In the third array
there are 5 As and 4 Cs, so A beats C with probability 5/9.

You can make a fortune with a set of such dice! Let your
opponent choose one; then you choose whichever one beats
it (in the long run, with probability greater than evens).
Repeat. You will win on 55.55% of all plays. Yet your oppo-
nent has a free choice of the ‘best’ die!

A word of warning, though: don’t place too much reliance
on probability theory without making the rules of the game
very precise. In his marvellous little book The Broken Dice, Ivar
Ekeland tells the story of two Nordic kings who played dice
to decide the fate of a disputed island. The King of Sweden
rolled two dice and scored a double 6. This, he boasted, was
unbeatable, so King Olaf of Norway might as well give up.
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Olaf muttered something to the effect that he, too, might
score a double 6, and cast his two dice. One turned up 6; the
other split into two pieces, one showing a 1 and the othera 6.
Total: 13! All of which goes to show that what you think is
possible depends upon how you model the problem.

If the tale is true, King Olaf was extraordinarily fortunate.
A few cynics think that Olaf rigged the whole scam.

L

FEEDBACK

Many readers wrote in with their own variations on the set
of three ‘non-transitive’ dice in the November 1997 column.
My dice had faces (each occurs twice) as follows: A:(3,4,8);
B:(1,5,9); C:(2,6.7). Then B beats A with probability 5/9, C
beats B with probability 5/9, and A beats C with probability
5/9. George Trepal of Gehring, Florida pointed out that these
sets of numbers, suitably arranged, form the columns of a

magic square - an array of numbers whose rows, columns,
and diagonals all add up to the same amount. The magic
square concerned is

> W o
o u =
N N O




14 | cHAPTER 1

Moreover, there is a curious ‘duality” if the rows of this
square are used for faces on dice instead, say A:(8,1,6);
B:(3,5,7); C:(4,9,2) - again with each face occurring twice if
you want six-sided dice instead of unorthodox three-sided
ones - the resulting set is again non-transitive, and A beats
B with probability 5/9, B beats C with probability 5/9, and C
beats A with probability 5/9.

With the magic square

1
6
1"

w N o
S U1 O

the results are interestingly different. For the rows, A beats
B with probability 6/9, B beats C with probability 6/9, and C
beats A with probability 5/9. For the columns, B beats A
with probability 5/9, C beats B with probability 5/9, and A
beats C with probability 5/9.

Trepal's best set - using the smallest numbers - follows
the 6/9, 6/9, 5/9 pattern, and is: A:(1,4,4); B:(3,3,3); C:(2,2,5).
Zalman Usiskin of the University of Chicago raised and
answered a natural question. Can you make the advantages
bigger than 5/9? More precisely, given three non-transitive
six-sided loaded dice, what is the largest possible probability
p for which all three pairs provide a win with probability at
least p? By ‘loaded’ | mean that the faces need not appear
with equal probability. The answer is a new occurrence of a
famous number, the golden number

/
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4 N

Suppose that:
A scores 4 with probability ¢ — 1 and 1 with probability
2-¢;
B always scores 3;
C scores 2 with probability ¢ — 1 and 5 with probability
2 - ¢.
Then A beats B, B beats C, and C beats A, all with probability
¢ — 1, which is approximately 0.618. This is significantly
larger than 5/0.9 = 0.555, and it is the largest advantage
possible.

Loaded dice can be simulated, to high accuracy, by fair
dice with lots of faces, by repeating each number suitably
many times. Using an icosahedron, with 20 faces, we can
achieve a figure of 16/25 = 0.64, as follows:

A has 4 on 12 faces and 1 on 8 faces;
B has 3 on all 20 faces;
Chas 2 on 12 faces and 5 on 8 faces.

ANSWER

To make two dice for which all totals from 1 to 12 equally
likely, one must have faces 1, 2, 3, 4, 5, 6, and the other O,
0,0,6,6,6.

J
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Pursuing Polygonal
Privacy

Some of the most difficult questions in
mathematics are inspired by everyday
life. Who would have thought that the
simple act of building fences can suggest
problems that no one has yet been able
to solve?



NE OF THE most appealing areas of mathematics,
full of simple problems whose solutions are
currently unknown, is combinatorial geometry. In
such problems, the aim is to find arrangements of
lines, curves, or other geometric shapes that achieve some
objective in the most efficient manner possible. For example,
the Mother Worm’s Blanket problem® asks: what is the shape
of the smallest area that can cover a curve of unit length, no
matter how that curve is arranged? Although many candidate
shapes have been proposed, no such shape has yet been proved
to have minimal area, and it remains possible that the problem
has no solution at all. Recreational mathematicians can have a
lot of fun with such questions, because there is plenty of scope
for experiment and ingenuity. Even if it is not possible to prove
that some particular shape is the best possible, you can often
find improvements on those that were known previously.
This chapter concentrates on a puzzle known as the
Opaque Square Problem, along with several fascinating

' See Game, Set and Math, Chapter 1.
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variations. It was brought to my attention by Bernd Kawohl
(Cologne), and the discussion is based on an article he sent
me. Suppose you own a square plot of land, whose sides, for
simplicity, are assumed to have unit length. For some reason
best known to you — privacy, say — you want to build a fence
on your land that will block any straight line of sight passing
across it. Moreover, to save money, you want the fence to be
as short as possible, subject to blocking every line of sight.
How do you arrange the fence?

The fence can be as complicated as you like, with lots of
different pieces, joined together however you wish. The
pieces of fence can be curved or straight. In fact, it could be
any shape for which some generalization of the concept
‘length’ makes sense.

Perhaps the most obvious solution is to build a fence round
the entire perimeter, which gives a total length of 4 (Figure
4a). A few moments’ thought reveals an improvement: leave
out one side to create a square-cornered U shape (Figure 4b).
Now the length reduces to 3. This is in fact the shortest fence
if we make the additional assumption that the fence must be
a single polygonal or curved line. Why? Because every fence
that renders the square opaque must contain all four corner
points (otherwise there is a ‘line of sight’ passing through a

(@) (b) (9 (d)

FIG 4 Opaque fences for the square.
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corner) and the shortest single curve that contains all four
corners is composed of three sides of the square.

However, a more complicated fence exists with length
1++/3 = 2.732, as in Figure 4c. The angles between the lines
here are all 120°. Arrangements of this kind, in which the
fence is connected, are called Steiner trees, and it has long
been known that 120° angles keep the length of the tree as
short as possible.” This is the shortest connected fence. None-
theless, we haven't finished. If we allow the fence to have
several disconnected pieces, the total length can be reduced
to 2.639 as in Figure 4d. Here the three lines in the upper half
of the diagram again meet at angles of 120°. This final attempt
is widely believed to be the shortest possible opaque fence,
but nobody has yet found a proof.

Indeed, it has not even been proved that a shortest opaque
fence exists. The main problem in proving existence is that it
might (perhaps!) be possible to keep shortening the length
by making the fence more and more complicated. Vance
Faber and Jan Mycielski have proved that for any given
number of connected components, there exists a shortest
opaque fence. What is not known is whether the minimal
length keeps shrinking as the number of components
increases without limit, or whether a fence with an infinite
number of components can out-perform all fences with
finitely many components. It seems unlikely that either of
these things can happen, but neither has yet been ruled out.

Kawohl has given a lovely proof that Figure 4d is the
shortest fence having exactly two components. First, he

* See How to Cut a Cake, Chapter 12.
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shows that one component must contain three corners of
the square and the other must contain the remaining corner.
The first component must therefore be the shortest Steiner
tree linking three corners, and it is known that this has the
shape shown in the upper part of the figure. The convex hull
of this shape — the smallest convex region that contains it —is
the triangle formed by cutting the square in two along a diag-
onal. The second component must be the shortest curve that
joins the fourth corner to this triangle, and this is clearly the
diagonal line from that corner to the centre of the square.
What about shapes other than the square? If the plot of
land is an equilateral triangle, then the shortest opaque fence
is a Steiner tree, formed by joining each corner to the centre
along a straight line (Figure sa). If the plot is a regular
pentagon, then the shortest known opaque fence comes in
three pieces, as in Figure 5b. One piece is a Steiner tree linking
three adjacent corners of the pentagon. The second is a
straight line joining the fourth side to the convex hull of the
first three corners. The third is a straight line joining the final

(@)

FIG 5 Opaque fences for the equilateral triangle and the regular
pentagon and hexagon.
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corner to the convex hull of the first four. Again, no proof
exists that this fence has minimal length, but no shorter
opaque fence has been found.

For the regular hexagon, the best fence known is similar,
but because the corner angles of the hexagon are 120°, the
Steiner tree becomes a series of edges of the hexagon. In fact,
it consists of three consecutive edges, linking four adjacent
corners together. Then the second component of the fence is
the shortest line joining a fifth corner to the convex hull of
the first four, and the third component is the shortest line
joining the sixth corner to the convex hull of the first three.

It has not been proved that this fence is optimal, but the
construction extends to give a conjectured minimal fence for
any regular polygon with an even number of sides (Figure 6).
Divide the polygon into two by a diameter joining two
opposite corners. The first component of the fence is formed
from all of the edges that lie in that half, forming the polyg-
onal analogue of a semicircle. The second component is the
shortest line linking the next corner to the convex hull of the

FIG 6 Conjectured shortest opaque fence for an even-sided regular
polygon.
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first component, the third component is the shortest line
linking the next corner to the convex hull of the first two
components, and so on.

A polygon with a large number of sides is very close to a
circle, and we can ask for the shortest fence that makes a
circle opaque. By choice of units, we may assume that the
circle has unit radius. The simplest fence that comes to mind
is the circumference of the circle, of length 27 = 6.283 (Figure
7a). However, if the fence is permitted to lie outside the plot of
land, we can do better. Remove half the circumference to
leave a semicircle, of length 7, and extend it by adding two
lines of length 1 that are tangent to the circle at the ends of
the semicircle, forming a U (Figure 7b). This is an opaque
fence for the circle, and its length is 7w + 2 = 5.142.

It can be proved that Figure 7b is the shortest possible fence
if we insist that the fence be a single curve — no branch points
and all in one piece. There is another way to state its ‘opaque-
ness’ property.? Suppose that a straight pipe or telephone line

(@) (b)

FIG 7 Opaque fences for the circle. (a) The circle itself, length 2x for
a circle of radius 1. (b) A shorter fence, length n + 2.

3 See Math Hysteria, Chapter 6.
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is known to pass within distance 1 of some specific point:
what is the shortest trench we can dig that is guaranteed to
find it? We know that the pipe must cross the circle of unit
radius centred at that point, and must therefore hit any
opaque fence for that circle. So we should dig a trench in the
form of an opaque fence.

With the trench version of the puzzle it is natural to allow
the trench to go outside the circle — but fences are normally
built on the owner’s land, not on their neighbours’. Kawohl
shows that the shortest opaque fence lying entirely inside the
circle of unit radius also has length no greater than 7 + 2. He
does this by considering the conjectured fence for an even-
sided polygon with a large number of sides, closely approxi-
mating the unit circle. A trigonometric calculation proves
that the length of a fence like the one shown in Figure 6, but
with more sides to the polygon, is then very close to m + 2.
The difference can be made as small as we please by taking a
large enough number of sides.

There is much here for the amateur to investigate. Are
the conjectured fences truly the shortest possible, or is
there a way to shorten them further? Can anything be
proved about the conjectured solutions? What about other
shapes — arbitrary polygons (convex or not), ellipses,
semicircles... And what about the same problem in three
dimensions: the opaque cube and sphere? Now the aim is to
minimize the total area of the fence.
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FEEDBACK

Martin Gardner raised the problems of the opaque cube and
sphere in 1990, and Kenneth A. Brakke of Susquehanna
University tackled them in 1992 (see Further Reading and
Website). Brakke's best solution for a unit cube has an area
of 4.2324.

WEBSITE
OPAQUE CUBE:

http://www.susqu.edu/brakke/opaque/default.html



http://www.susqu.edu/brakke/opaque/default.html
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Making Winning
Connections

Some mathematical games are truly
mathematical, and there is no better
example than Hex. All you have to do is
place your counters on a honeycomb-
patterned board, and connect two
opposite edges. Easy? There's an entire
book devoted to it.



HAT DO A Danish poet-mathematician and a

Nobel laureate have in common? One of the

best mathematical board games ever invented,

that’'s what. Nowadays it’s usually called Hex,
but its early incarnations bore a variety of names. Cameron
Browne’s Hex Strategy takes a comprehensive look at Hex and
how to win it. Hex is at least as addictive as front-line
computer games, and gives your brain a far more stimulating
workout.

Hex is a two-player game, played on a board made
from hexagonal cells, arranged in the shape of a rhombus
(Figure 8). The standard board size is 11 x 11, but other sizes
provide entirely playable games. Each player ‘owns’ two
opposite edges of the board; the four corner cells are joint
property. One player has a stock of black counters, the other
a stock of white counters — stones from the oriental board
game Go are ideal.

The rules are astonishingly simple. Players take turns to
place one of their counters on an unoccupied cell of the
board — who starts is decided by tossing a coin or any other
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FIG 8 The Hex board.

mutually agreed method. A player wins by constructing a
connected chain of counters joining the two edges that they
own. The chain may have additional counters, side-branches,
or loops, and need not be connected to other pieces of that
colour. All that matters is that some series of counters forms
a connected path from one edge to the opposite edge. It
sounds simple, but the simplicity is deceptive. Hex is a game
of deep subtlety.

Hex was first invented by Piet Hein, a Danish mathemat-
ician who is also famous for his short poetry (known as
‘grooks’) and numerous other offbeat ideas. He called the
game Polygon, and it first saw the light of day in the Danish
newspaper Politiken on 26 December 1942. The mathemat-
ician John Nash reinvented it independently in 1948 when he
was a graduate student at Princeton. In 1969 Nash won the
‘Nobel Prize’ in economics, more precisely the Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel. His winning idea was the concept of ‘Nash equilib-
rium’ in game theory, and his life is the subject of the bril-
liant biography A Beautiful Mind. In 2001 this was made into
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a movie starring Russell Crowe as Nash, which won four
Oscars. At Princeton the game was known as Nash, or some-
times John — because it was often played on hexagonal bath-
room tiles.*

In the mid-1950s Martin Gardner wrote about Hex in his
Mathematical Games column, and his article is reprinted in
Mathematical Puzzles and Diversions from Scientific American.
Overnight it became a craze in virtually every mathematics
department in the world. For example in 1968, when I first
arrived at the University of Warwick as a graduate student, a
group of us started a magazine called Manifold. The first issue
had a Hex board drawn on the front and back covers (half on
each) and an article about it between them. But it is now
more than 40 years since Gardner described Hex to Scientific
American’s readers, so I think it is time to introduce it to a
new generation.

Some simple mathematical analysis illuminates the game.
Since pieces are never removed, the number of moves is
finite — at most 121 for the 11 x 11 board. A connected chain
from edge to edge for one player necessarily blocks any
connected chain from edge to edge for the other player, which
makes it intuitive (but not entirely straightforward to prove)
that eventually one player or the other must win. The basic
point is that black, say, can only be prevented from forming
a winning chain if white creates such a chain herself first.

It’s an interesting challenge to prove the ‘obvious’ fact that
if the board is filled with black and white stones, then one
colour must connect two opposite edges. It’s clear that both

+ ‘Bathroom’ in the American sense, often colloquially called a john’.
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colours cannot do this at the same time, since the chains
involved must cross. It’s also plausible that if, say, black stones
do not connect opposite sides, then that must happen because
a chain of white stones is getting in the way. However, a
complete proofis less obvious. Suppose, for the sake of argu-
ment, that black’s stones do not include a chain that connects
the two black edges. Consider one ‘component’ of the black
regions — all the black stones connected (by other black
stones) to a black edge. Now look at the ‘boundary’ of this
region — all the immediately adjacent white stones. Clearly,
this set of white stones must connect the two white
edges...but why?

Alternatively, we can prove that one player must have a
winning strategy. Then the above claim easily follows. In
fact, it can be proved that with proper play, the first player
should always win. The proof, found by Nash, uses a general
technique called ‘strategy stealing’. Suppose, for the sake of
argument, that white plays first, and there is a strategy that
guarantees a win for the second player, black. If so, then
white can employ unbounded brainpower to work out what
that strategy is. She can then use this alleged second-player-
wins strategy to beat black, as follows. White makes any
move, and promptly forgets it. She now pretends that black
is opening the game, and that she is the second player, not
the first. Whichever move black makes, white plays the
correct response according to the second-player strategy.
There is one minor modification, however. Sometimes that
strategy will require her to place a counter in the position
already occupied by her first ‘forgotten’ move. If so, no
problem: the desired cell is already occupied by a white
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counter, so the strategy is already complied with. She
therefore makes a new move, in any unoccupied cell, and
this becomes the new ‘forgotten’ move.

Continuing in this way, white can force a win. But now we
find ourselves in a curious situation: by stealing the alleged
second-player-wins strategy in this manner, white has played
first — and won, no matter what moves black makes. The
only way out of this logical impasse is that there never was a
second-player-wins strategy. Since this game is finite and
one player must eventually win, this implies that there must
exist some first-player-wins strategy.

Observe that the second player cannot steal a first-player-
wins strategy. Also, convince yourself that strategy stealing
does not work for games like chess, where moves needed later
in the strategy may be unavailable earlier on. If you can do
these two things, you'll understand the proof.

At first sight this result renders the game pointless, because
both players know who ought to win if they exercise perfect
play. However, a similar issue arises in many other games.
The most impressive example is draughts (the British name
for what our American cousins call chequers), now known
to be a draw if both sides play perfectly. The computer-
assisted proof, organized and orchestrated by Jonathan
Schaeffer, took 18 years; the main problem is the gigantic
number of positions and potential lines of play. Yet rational
adults remain happy to play draughts, because the perfect
strategy is so complex that the human mind cannot imple-
ment it unaided. The proof that the first player should always
win a game of Hex is even more elusive; it is an existence
proof only, so the proof does not tell us an explicit winning
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strategy, no matter how complicated. In fact, the largest
board for which a winning strategy is actually knownis 9 x 9,
a discovery made by Jing Yang of the University of Manitoba
(see Websites). So even on a 10 x 10 board, the first player
knows that in principle he ought to win, but has no idea how
to go about doing it. And if that still doesn’t seem fair to the
second player, many people allow an optional rule: the
second player may elect to swap the opening piece for one of
her own, once it has been played, instead of playing on a
new cell.

A full discussion of the subtlety of Hex would, and does,
occupy an entire book. So I'll focus on just two features, to
raise awareness of the game’s subtlety. The first, which
rapidly becomes clear to anyone who tries the game, is that
cells do not have to be occupied in order to play a strategic
role. Figure 9a shows a bridge, in which two non-adjacent
cells (here occupied by black) share two cells that touch both.
As long as both of the latter cells remain unoccupied by
white, the two former cells are in effect already joined — for
as soon as white plays on one of the intermediate cells, black

(@) (b)
FIG 9 (a) A bridge. (b) Overlapping bridges don’t work.
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can play on the other. At the first level of play above rank
novice, players usually attempt to build chains of bridges in
the hope that their opponent won’t notice. A bridge is by no
means invincible, however. A black bridge can be defeated if
white contrives to occupy one of its intermediate cells, whilst
simultaneously threatening a winning move elsewhere.
Nevertheless, this is usually far from easy, so it is best to stop
your opponent building too many bridges.

A useful general principle is that a player’s entire position
is only as strong as its weakest link. If your opponent can
attack some part of your incipient chain with good hopes of
success, then you should either try to strengthen your own
weakest link, or attack theirs. However, you shouldn’t do this
automatically on all occasions, because your opponent may
notice and lay a subtle trap.

Another useful principle is to sneak up on your oppo-
nent’s weaknesses from some distance away. Instead of
playing a counter smack in the middle of their weak link, for
instance, you can mentally map out a chain of bridges and
play somewhere along that chain. By the way, don’t make the
mistake of forming a chain of bridges where the interme-
diate cells of two bridges overlap (Figure 9b), because when
the opponent plays on the overlap she attacks two bridges at
once. You can defend one — but not both.

Several levels of play above bridges we encounter ladders.
These provide subtler opportunities and problems. A ladder
arises when one player tries to form a connection to an edge
but is pushed away at a fixed distance by their opponent, so
that both players start forming long forced chains of counters,
parallel to each other. Figure 10a shows the start of a ladder,
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adder

FIG 10 (a) Start of a ladder. (b) Where it leads. (c) Blocking a
ladder.
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with black to move. Black has no option except to play at cell
p, otherwise white can force a win. By the same token, white
now has to play at g. If black keeps trying to force a connec-
tion to the same edge (and for several moves she must do this
or lose) then white is forced to keep blocking, and a long
sequence of white counters begins to extend along the edge,
with a black chain next to it. What black has failed to notice,
however, is that if this process continues, white will win
(Figure 10b). It is important to anticipate the occurrence of
ladders, and to block your opponent’s ladders before they get
started. If black had an extra counter (Figure 10c) near the
white edge, then black would win the ladder exchange.

Hex Strategy considers these issues, and many others, in
considerable depth. It also discusses a host of variations on
the basic Hex game. For example the game of Y is played on
a triangular board (Figure 11) and a player wins by forming a
chain that touches all three edges. The strategy-stealing proof
works here, by the way, so the first player must have a

FIG 11 Board for the game of Y.
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winning strategy. But again, no explicit winning strategy for
player one is known, except on very small boards. Hex can
be played on a map of the United States, with states acting as
cells, and north-south or east-west as the edges to be
connected. Here the first player can force a win by playing in
California — you may enjoy working out how play then
proceeds. Hex can also be played on a sphere, tiled with
hexagons and pentagons. Since there are no edges, the first
player to surround at least one cell (unoccupied or occupied
by their opponent) wins.

: &4 :
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Jumping Champions

Prime numbers continue to puzzle the
world’'s mathematicians. The commonest
gap between successive primes appears
to be 6, and that's certainly true up to a
trillion or so. Given this vast quantity of
‘'experimental’ evidence, are we justified
in concluding that 6 is always the
commonest gap, no matter how big the
numbers become?



ATHEMATICS IS FULL of surprises. Who would

have imagined, for instance, that something as

straightforward as the natural numbers 1, 2, 3,

4,...could, with minimal effort, give birth to
anything as baffling as the prime numbers 2, 3, 5,7,11,...? The
pattern of natural numbers is simple and obvious: whichever
one you've got, it’s easy to work out the next one. You can’t say
that for the primes, yet it is a simple step from natural numbers
to primes: just take those that have no proper divisors.

We know a lot about the primes, including some powerful
approximate formulas that provide good estimates even
when exact answers aren’t forthcoming. For example, the
Prime Number theorem, proved in1896 by Jacques Hadamard
and (independently) Charles-Jean de la Vallée Poussin, states

that the number of primes less than x is approximately 1 X

ogx
where log denotes the natural (base e) logarithm. So, for
instance, we know that there are roughly 4.3 x 10 primes

with fewer than 100 digits — but the exact number is a total
mystery.
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There are many more things about primes that we don’t
know. A decade ago, Andrew Odlyzko (AT&T), Michael
Rubinstein (University of Texas), and Marek Wolf (Wroctaw)
turned their attention to the gaps between successive primes.
The problem they discussed is: Up to some limit x, what is
the commonest gap between successive primes? Harry
L. Nelson had raised this question in the Journal of Recreational
Mathematics. Later John Horton Conway (Princeton Univer-
sity) named the associated numbers jumping champions.

The primes up to 50 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47. The sequence of gaps — the differences between
each prime and the next —goes 1, 2, 2,4, 2, 4,2, 4,6, 2,6, 4, 2,
4.The number1appears once (and once only, since all primes
except 2 are odd) and the rest are even. Here the gap 2 occurs
six times, the gap 4 occurs four times, and the gap 6 occurs
twice. So when x = 50, the commonest gap is 2, and this
number is a jumping champion.

Sometimes, several gaps are equally common. For
instance, when x = 5 the gaps are 1, 2 and each occurs once.
After that, the sole jumping champion is 2 until we reach x =
101, when 2 and 4 are tied for the honour. After that, the
jumping champion is either 2, 4, or both until x = 179, when
2, 4, and 6 are involved in a three-way tie. At that point the
challenge from 4 and 6 dies away, and 2 reigns supreme until
x = 379, where it is tied with 6. From x = 389 the jumping
champion is mostly 6, occasionally tied with 2 and/or 4, but
in the range x = 491 to 541 the jumping champion reverts to
4. From x = 947 onwards the sole jumping champion is 6,
and a computer search shows that this continues up to at
least x =10".



42 | cHAPTER 4

It seems reasonable to conclude that apart from some
initial competition from 1, 2, and 4, the only long-term
jumping champion is 6. The computer evidence in favour
seems strong. The now-defunct journal Experimental Math-
ematics was devoted to just such problems, and it was virtu-
ally unique among mathematics journals in that it existed for
researchers to publish unproved conjectures obtained with
the aid of computer calculations. This does not represent a
weakening of the mathematical requirement of proof,
because the articles clearly state that proofs are lacking.
Instead, the journal’s aim is to suggest interesting problems
for mathematicians to answer with the usual logical rigour.

All number theorists know that there is evidence, and
there is evidence. A pattern that persists up to numbers of a
trillion or so may well change as the numbers get bigger.
This problem may well be a case in point, for Odlyzko and
colleagues provide a persuasive argument that somewhere
near x = 1.7427 x 10 the jumping champion changes from 6
to 30. They also suggest that it changes again, to 210, near x =
1045, They support these suggestions with some non-
rigorous but careful theoretical analysis, and some carefully
chosen numerical experiments.

Except for 4, the conjectured jumping champions fit into
an elegant pattern. This becomes obvious if we factorize
them into primes:

2=2
6=2x3
30=2X3X5

210=2X3X5X7.
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Each number is obtained by multiplying together successive
primes up to some limit. These numbers are called primorials
(like factorials but using primes), and the next few are

2310=2X3X5X7X11

30030 =2X3X5X7X11X13

510510 =2 X3 X §5X 7 X11 X13 X 17
11741730 =2 X 3 X § X 7 X 11 X 13 X 17 X 23.

Oldlyzko and colleagues’ main conclusion is the Jumping
Champion conjecture: the jumping champions are precisely
the primorials, together with 4. The basis for this suggestion
is another conjecture, known as the Hardy-Littlewood
k-tuple conjecture. It was stated by Godfrey Harold Hardy
and John Edensor Littlewood in 1922, and it is about patterns
in the gaps between primes.

Anyone who looks at the sequence of primes notices that
every so often two consecutive odd numbers are prime: 5
and 7, 11 and 13, 17 and 19. The Twin Prime conjecture states
that there are infinitely many such pairs. They can certainly
get very large — the largest known in September 2009 are

65,516,468,355 x 2333531 65,516,468,355 x 2333333 41

with 100,355 digits each. (As an aside: prove that twin primes
always have the same number of decimal digits. If that seems
obvious, here’s a second challenge: if ‘decimal’ is replaced by
‘base n’, for which values of n is the analogous statement
false?) Moreover, there is a probabilistic calculation that
strongly suggests the conjecture is correct. It is based on the
idea that primes occur ‘at random’ among the odd numbers,
with a probability based on the Prime Number theorem.
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Of course this is nonsense —a number is either prime or not,
there isn’t a probability involved —but it is plausible nonsense
for this kind of problem. According to the calculation, the
probability that the list of twin primes is finite is zero.

What about three consecutive odd numbers being prime?
There is one example: 3, 5, 7. It is the only example, because
given any three consecutive odd numbers, one of them is a
multiple of 3 (so is not prime unless it happens to equal 3,
whence the sole example). However, the patternsp,p+2,p+6
and p, p + 4, p + 6 cannot be ruled out by such arguments,
and they seem to be quite common. For example the first
pattern occurs for 11, 13, 17 and again for 41, 43, 47; later we
find 881, 883, 887. You might like to work out why the pattern
of final digits must always be 1, 3, 7. The second pattern
occurs for 7, 11, 13, again for 37, 41, 43, and again for 877, 881,
883. This time the pattern of final digits is 7, 1, 3.

Hardy and Littlewood thought about patterns of this kind
for any number of primes, and they performed the same
kind of probabilistic calculation that I've just described for
the twin primes. They deduced a precise formula for the
number of sequences of k primes with a specified pattern of
gaps, all less than some limit x. The formula is complicated
to describe so I won't give it here: see the article by Odlyzko
and colleagues, and references therein.

The analysis that leads to the Jumping Champion conjec-
ture begins with the Hardy—Littlewood formula and extracts
from it a formula for the number N(x,d) of gaps between
consecutive primes of given size 2d, up to some limit x.
We use 2d because the gaps have to be even, except for the
gap between 2 and 3. The formula is expected to be valid
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FIG 12 Plot of the logarithm of the number of occurrences of a gap
of size 2d (vertical coordinate) against 2d (horizontal coordinate),
for primes up to various limits x. These range from x = 2*° (lower
left) to x = 244 (upper right).

only when 24 is large and x is much larger. Figure 12 shows a
plot of log N(x,d) against 2d for x = 2*°, 2*,..., 2#4. Each graph
is approximately a straight line, but with bumps. A particu-
larly prominent bump occurs at 2d = 210, the conjectured
next jumping champion after 6. (It would look more promin-
ent, but the logarithm flattens it out.) This kind of informa-
tion suggests that the formula is not too wide of the mark.
Now, if 2d is going to be a jumping champion, the value of
this formula has to be pretty big — at least half the number of
primes less than x. The precise form of the formula (which
again [ won’t write down) shows that the best way to achieve
this is if 2d has a lot of distinct prime factors. It also says that
2d should be as small as possible subject to this condition, so
the most plausible choices for 2d are the primorials. (The
known jumping champion 4 is presumably an exception,
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occurring at sizes where the formula isn’t a good approxima-
tion anyway.)

The conjectured formula also lets us work out roughly
when a given primorial takes over from the previous one as
the new jumping champion. Suppose the two primorials are
A=2x3xxp,B=2x3x-xp xq, with pand q successive
primes. Then the second takes over from the first roughly
when x = 242 where e = 2.718...is the base of natural
logarithms. This is where the expected values of x for 30 and
210 to become jumping champions come from. Because of
the exponential, these values of x rapidly become gigantic.

What is left to do here? Prove the Jumping Champions
conjecture, of course — or disprove it, if it's wrong. If you
can’t do that, try something weaker: for example, prove that
there exist infinitely many distinct jumping champions. In
1980 Paul Erdos and E.G. Straus proved just that, but only by
assuming a quantitative version of the Hardy-Littlewood
k-tuple conjecture. Unfortunately even the Twin Prime
conjecture seems horrendously hard to prove, and the full
Hardy—Littlewood k-tuple conjecture is almost certainly
worse. More promising for recreational mathematicians is
the search for other interesting properties of the gaps
between primes. For example, what is the least common gap
(that actually occurs) between consecutive primes less than
a limit x? Which gap occurs closest to the average number of
times — the most ordinary gap? As far as I know, these ques-
tions are wide open, even for relatively small values of x.
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ANSWER

Why do twin primes always have the same number of digits
in decimal notation? It may seem obvious, but the proof
reveals a potential loophole, which can occur in other number
bases. Let the primes concerned be p and p + 2. In decimal
notation, it is possible for p + 2 to have more digits than p.
However, this happens only when p=999...98 or 999...99.
In the first case pis even (and at least 8) so cannot be prime.
In the second case p is a multiple of 9 so cannot be prime.

The final step in the proof uses special properties of the
number 10. In other bases, things work out differently. In
base-n notation, p must be of the form n*~2 or n*-1 for
some power k. That is, n* must be either p+ 2 or p+ 1 for
the smaller twin p of a twin prime. This can happen: for
example, when p = 3 then n* can be 4 or 5. The twin primes
3and 5 (decimal) are 3 and 11 (base-4), which have different
numbers of digits. In base 5, the same twin primes are 3 and
10, again with different numbers of digits.

With more effort, we can take the analysis further. If nk=p
+ 2 then n*is prime, so k=1 and n s prime (equal to p + 2). If
If n*=p+1then p=n*1=(n-1)("*"+n*?+...+ 1).Since pis
prime, either k=1 orn=2.1f k=1 then n=p + 1 for the
smaller twin p of a twin prime. If n=2 and k> 1 then 2*-1 and
2%+ 1 must both be prime. The only case where this can occur

~
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is 221 =3 and 22 + 1 = 5. (If 2k~1 is prime - a so-called
Mersenne prime - then it is well known and easy to prove that
k must itself be prime. If 2k + 1 is prime - a so-called Fermat
prime - then it is well known and easy to prove that k must
be a power of 2. The only power of 2 that is prime is 2.)

In short: p and p + 2 are twin primes with different
numbers of digits to base nifandonlyifn=p+1Torp+2
where p is the smaller twin prime, or n=2 and p = 3.

FEEDBACK

‘lumping champions' was almost my last column, so there
wasn't any feedback to speak of. So I'm going to cheat and
tell you about a truly amazing discovery, one of the few
cases where primes no longer baffle mathematicians. This is
the Green-Tao theorem, proved in 2005 by Ben Green and
Terence Tao. It is about patterns of primes similar to, but
significantly different from, the p, p + 2, p + 6 example
described a few pages back. The main result is easy to state:
for any integer k there exist infinitely many arithmetic
progressions of primes with k terms.

An arithmetic progression is a sequence of numbers in
which each exceeds the previous one by the same fixed
amount. Symbolically, such a sequence looks like

a,a+d a+2d a+3d,...,a+ (k1)d

if it has k terms. Here d is the common difference and a is
the first term. In the Green-Tao theorem, d is not specified
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in advance, but is constructed during the course of the
proof. For many years mathematicians - often amateurs -
have sought long arithmetical progressions of primes. For
three terms, there is the obvious progression 3, 5, 7, in which
d= 2. An elegant seven-term progression is

7 157 307 457 607 757 907

with d= 150. But serious computer assistance is needed to
find a 25-term progression, the longest one actually known
(as of September 2008) is

6171,054,912,832,631 + 366,384 x 23 x d

for d = 0, 1, 2,..., 24. It was discovered by Jaroslaw
Wroblewski and Raanan Chermoni in 2008. Green and Tao
even provided an upper limit on how big the primes need to
be, in terms of k. If we write a"b for @, this limit is

2"2"2"2"2"2"2"2"100k.
In such expressions, the rule is to apply successive power
operations " from the right working to the left. So first we
raise 2 to the power 100k, then raise 2 to that power, and
so on. The result is truly gigantic, and presumably a massive
overestimate, but it's all we know right now, and it's aston-
ishing that Green and Tao managed to achieve that.

By the way, any arithmetical progression of primes must
be finite - they can't go on forever. But there is no specific
limit that applies to them all.

It is relatively easy to extend the Green-Tao theorem to
‘generalized arithmetical progressions’ in which the single
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difference dis replaced by a finite list of differences, and all
combinations are permitted. For instance, with two differ-
ences d, and d, we consider all numbers a + k,d, + k,d, with
k, and k, running from O to some upper limit. In fact, all
these numbers can be viewed as part of a longer arithmetic
progression, and we just apply the Green-Tao theorem to
that.

The theorem has innumerable consequences, and |
mention just one: the existence of arbitrarily large magic
squares composed entirely of primes (of course, these can't
be consecutive integers, and they aren't even consecutive
primes). Here's a 4 x 4 example:

37 83 97 41

53 61 71 73

89 67 59 43

79 47 31 101
The theorem says you can do this kind of thing (though
using gigantic primes) for, say, magic squares of size a
million, or a billion - as big as you please. For further infor-
mation, see Andrew Granville's article in Further Reading.
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Walking with
Quadrupeds

Animals move in a variety of patterns,
called gaits, and many of the patterns
are symmetric. Now we are beginning to
understand why. It all boils down to
patterns in the networks of nerve cells
that control animal motion. Jane and
Tarzan explain.



A centipede was happy quite,

Until a frog in fun

Said, ‘Pray, which leg comes after which?”’
This raised her mind to such a pitch,

She lay distracted in a ditch

Considering how to run.

Mrs. Edmund Craster

ARZAN LEAPED INTO the air, kicked both legs out in

front of him simultaneously, and sat down heavily on

the ground. He had repeated this sequence of actions

more than 20 times since Jane had started watching,
and from the look on his face that was an underestimate.

It’s not that Tarzan doesn’t have a brain, Jane thought. He just
needs training in using it. Indeed, she'd mapped out an ambi-
tious education for him, and Tarzan’s nose had been buried
in books for weeks.

Maybe that was the problem. Jane grabbed a convenient
vine and slid down.
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The ape-man looked up as she approached. ‘Uh, hi Jane.

‘What was all that about?’

‘Uh — I was testing out Curie’s principle.’

‘Really?’ It was a novel excuse.

‘Yes. And it doesn’t work.

Jane gently took his hand and led him into the shade of a
tree. ‘Let’s go somewhere cool and quiet, and you can tell me
all about it.

It took a while, but the gist was relatively simple. In one of
the books that Jane had brought with her into the jungle for
light reading, Tarzan had come across the statement that the
human body possesses bilateral symmetry — it looks pretty
much the same when reflected in a mirror. Tarzan had never
seen a mirror, but he had seen the surface of a still pond, and
from the pictures in the book he'd puzzled that one out. In
another book, he'd come across a fundamental principle
proposed by the great physicist Pierre Curie: that symmetric
causes produce equally symmetric effects.

‘So it seemed to me, Tarzan said, ‘that if I, a bilaterally
symmetric ape — sorry, man, I keep forgetting — cause myself
to walk, then Curie’s principle implies that my walk should
also be bilaterally symmetric. Which means that both legs
have to move forwards together. I've been trying it ever since,
but I can’t seem to get anywhere. Except by sitting on my —’

‘But, said Jane, ‘you've been doing it wrong. If you want a
bilaterally symmetric gait, you should hop. Like this.” She
imitated a rabbit, hopping along with both feet together,
hands held like paws. Tarzan watched the spectacle in fascin-
ation. Finally he plucked up enough courage to ask what a
gait was.
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‘It’s a pattern of limb-movement, used for locomotion,
said Jane. ‘Animals use all sorts of different gaits to get
around. Walk, hop, gallop ... Gazelles even pronk — they move
all four legs together.

‘Hopping is all very well,” said Tarzan, ‘but all it shows is
that a symmetric gait is possible. My reading of Curie’s prin-
ciple is that all human gaits — in fact, all gaits of all bilaterally
symmetric animals — ought to be bilaterally symmetric.’ He
paced thoughtfully up and down the clearing, stopping occa-
sionally to beat his fists against his chest in frustration. ‘But
most of them aren’t.

Bilaterally symmetric...The same as its reflection in a mirror,
thought Jane. She tried to imagine what Tarzan’s walk would
look like in a mirror (Figure 13). It would look like a walk. But
not quite the same walk.

‘It almost is,” she said. ‘When you reflect a walking gait, it
still looks like a walking gait.” She paused thoughtfully. ‘It
has to, really, otherwise people walking would look funny in
a mirror. Though I suppose that’s not conclusive, because
letters of the alphabet do look funny in a mirror. Hmmm.

FIG 13 In the human walk, left and right feet hit the ground in turn.
Reflection in a mirror (grey line) appears to swap left and right feet,
which is equivalent to a time delay of half a period.



WALKING WITH QUADRUPEDS | 57

‘The difference,” said Tarzan, ‘is that when I put my right
foot forward, my mirror-image puts its left foot — well, what
appears to me to be its left foot,  don’t know what its opinion
is — forward. Now, on my next step, I do put my left foot
forward, but by then my mirror-image is putting its right
foot forward. We're always out of step with each other.’

There were times when Tarzan seemed quite bright. ‘Out
of phase, not step, said Jane in excitement. ‘That’s why
everything looks all right in a mirror. If you delay time by
the amount required to take one step, then the relative
positions of the legs (though not their positions on the
ground) for the mirror walk looks exactly the same as they
do in the original’

‘Phase?”’

‘Walking — like all gaits — is a periodic motion. It repeats at
regular intervals of time. If you have two copies of the same
periodic motion, but one is time-delayed relative to the other,
then the fraction of the period representing the delay is called
the relative phase. Your left leg is out of phase with your right
leg by exactly half a period, that is, a relative phase of 0.5.

‘Which is very interesting, she continued, ‘because it
shows that gaits have symmetries in time as well as in space.
After all, a symmetry is just a transformation that leaves the
system looking the same afterwards as it was before. Peri-
odicity itself is a time symmetry: shift time by one period,
and everything looks the same. ‘Reflect left/right and shift
phase by 0.5" is a mixed spatio-temporal symmetry of the
human walk. Isn’t that grand?”’

‘What was the relative phase when you were hopping?
Was it 0?’ asked Tarzan tentatively.
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FIG 14 Eight snapshots of the bound of a kangaroo. The animal’s
bilateral symmetry is maintained at all times.

‘Exactly. The two legs moved together, so there was no
difference in phase. The same goes for a kangaroo when it
hops’ (Figure 14).

‘What'’s a kangaroo?”’

‘Oh, sorry—there aren’tany in Africa, theylive in Australia.
They hop around on two legs.’

The ape-man leaped to his feet, performed a curious war-
dance, and crashed to the ground. ‘I was trying to get a rela-
tive phase of 0.3, he explained.

‘I'm not sure you can,’ said Jane.

‘Of course I can! All T have to do is make my left foot lag
behind my right by 0.3 of a period!’

‘True.

‘But that seems hard.

‘Maybe it’s because it isn’t a true symmetry, said Jane. ‘You
see, if everything looks the same after swapping left and right
and shifting phase by 0.3, then not only must your left leg be
0.3 out of phase with your right, but your right must also be
0.3 out of phase with your left. So the right leg is 0.3 + 0.3 =
0.6 out of phase with itself, which is silly.’

‘Dangerous, too,’ said Tarzan, ruefully rubbing his legs.
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‘Hey! There’s a theorem in all this!” Jane yelled. Fans of
Edgar Rice Burroughs will recall that Jane’s father was
Professor Archimedes Q. Porter, so it is unsurprising that his
daughter should have inherited some of the family’s math-
ematical ability. ‘If left-right reflection combines with a
phase shift to give a symmetry, Jane went on, ‘then the phase
shift must be either o or 0.5. Nothing else is possible.

‘Why?’

‘Because the same argument applies. If each leg is delayed
relative to the other by some phase, then each leg is delayed
relative to itself by twice that phase. Now, it’s possible for a
leg to be delayed relative to itself — but only by an integer
multiple of the period, because that’s effectively the same as
no delay at all. So twice the phase shift is o, 1, 2, 3, and so on;
which implies that the phase shift is o, 0.5, 1, 1.5, and so on.
But 1 has the same effect as o, and 1.5 the same effect as 0.5,
because of periodicity.

‘Which means,’ she continued, ‘that the gaits of two-legged
animals can have only those two symmetries. Apart from no
symmetry at all. I wonder if that can actually —’ Tarzan
limped towards her, dragging one leg. ‘That’s it, exactly! You
do catch on quickly, Tarzan.

He squatted next to her, rummaging through the hair on his
chest in search of little bits of salt until Jane slapped his wrist.
‘Four-legged animals must be more complicated,” he said.

‘True. There are lots of quadruped gaits.’” Figure 15 shows
the eight most common. The bound has left-right symmetry,
like the two-legged hop. The pace, common in giraffes (Figure
16) and camels, is like the human walk: it changes phase by
half the period if left and right are swapped.
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WALK TROT PACE
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FIG 15 Eight common quadruped gaits, showing the relative phases
of the legs.

FIG 16 The walk of a giraffe, which breaks bilateral symmetry. The
second four frames are the same as the first four, but reflected
left—right (with respect to the giraffe, not the page).
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‘What I don’t understand,” Tarzan mused, ‘is why Curie’s
principle doesn’t work. Why are gaits less symmetric than
the whole animal?’ At that moment, Heftilump the elephant
ambled through the glade, trumpeting his pleasure at seeing
Tarzan. Tarzan trumpeted back. ‘Mind you,” he continued, ‘I
don’t think a pronking elephant bears contemplation.
Survival of the flattest... it would never have evolved.

‘Symmetry-breaking,’ said Jane. ‘That’s why Curie’s prin-
ciple fails.

‘What'’s symmetry-breaking?’

‘It happens when a symmetric system behaves in a less
symmetric way.

‘Oh. You mean, it’s what happens when Curie’s principle
fails.

‘Precisely!’

‘So...Curie’s principle fails whenever Curie’s principle
fails. Great. That really clarifies the issue, Jane.

Jane growled like an angry lioness. Damn! Now he’s got me
doing it! ‘The important point to understand, Tarzan, is that
Curie’s principle can fail. Let me show you how. Where’s
Jim?’

Young Jim Pansy was always hanging around near the
hut — usually in it, stealing bananas — and Jane collared the
beast with ease. She tied a knot in the end of a vine, and sat
the young ape on it, where it clung, chittering excitedly until
she stuffed a banana in its mouth to shut it up.

‘When Jim sits still and the vine hangs vertically down-
wards,’ said Jane didactically, ‘the entire system has circular
symmetry. Tarzan looked baffled. ‘I mean, if you walk round
it, it looks pretty much the same from all directions.” Tarzan
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inspected Jim’s face, then walked round to the far side. He
looked more baffled than ever. ‘You have to pretend Jim is a
featureless spherical lump, Tarzan.” He nodded happily.

‘Now, suppose I grab the vine where it’s draped over this
branch, and pull it up and down gently like this...Then Jim
bobs up and down, but he doesn’t move sideways. The impor-
tant part of the system, the bit of vine hanging from the
branch with Jim attached, is still circularly symmetric, even
though it bobs up and down; but look what happens.” As
Jane pumped the vine more energetically, Jim began to swing
in an arc, short at first, then longer and longer. The chimp
squealed in delight, waved its arms, and fell off, terminating
the experiment.

‘I saw it,’ said Tarzan, ‘but I'm not sure what I saw.

‘Symmetry-breaking,’ said Jane. ‘The perfectly symmetric
state of the system is to hang vertically. But, when [ pump it,
that state becomes unstable. It still exists, mathematically, but
you don’t observe it in practice because any tiny random
deviation tends to grow. Since the symmetric state can't
occur, then naturally the system has to do something else,
which perforce has to be less symmetric.

‘Ah. He paused. ‘What does “perforce” mean?’

Jane ignored him. ‘However, it’s not totally asymmetric.
Jim was swinging to and fro in a plane. If you think of that
plane as a mirror, then his swing is symmetric under reflec-
tion in that mirror. That’s an example of a standing wave.

‘But that’s not all.” She picked Jim up, stuffed another
banana into his mouth to mollify him, and attached him to
the vine again. ‘There’s another type of periodic oscillation
that Jim can perform, too.’” She gave the ape a shove, and he
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swung in circles. ‘Now, you might think that this motion has
circular symmetry, but that’s not true. If you rotate the
system through some angle, then it doesn’t look exactly the
same.’

‘No, it’s like the walk in a mirror. It's the same general kind
of motion, but in a different place at a given time.

‘Right. What does that mean?”’

‘Much the same, but the timing’s wrong...of course. It’s a
phase shift again.’

‘You've got it. If you rotate the system, and apply a suitable
time delay, it looks exactly the same as before. And in this case
the time delay is the same as the rotation, in the sense that a
rotation of 0.4 of a turn needs a time delay of 0.4 of a period,
and so on. That’s called a rotating wave.

‘Let me run this up an acacia tree and see who gets
scratched, said Tarzan. Jane began to wish she hadn’tincluded
a book about business in her travelling library. ‘When the
perfectly symmetric state becomes unstable, the symmetry
can break either to a standing wave, or a rotating wave. The
standing wave has a purely spatial symmetry — reflection in
its plane. The rotating wave has a mixed spatio-temporal
symmetry.’

‘That’s it, exactly!” Tarzan beat his chest and howled in
triumph, while Jane shook her head. It wouldn't go down
well in the House of Commons; the ape-man’s education still
had some way to go. ‘However, the circular symmetry hasn’t
totally vanished.” She grabbed the vine. Jim looked worried.
‘Choose a vertical plane.

‘In line with that monkey-puzzle tree, said Tarzan. Jane
gave Jim a push in that direction; the ape oscillated to and fro
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in the plane that Tarzan had chosen. ‘Which planes will that
work for?’

‘Any of them, I guess, said the ape-man. ‘Provided they’re
vertical and run through the point where the vine runs over
the branch.

‘Right. Planes through the symmetry-axis. And how are
those planes related?’

‘Hmmm...They’re all rotations of each other. I see! Instead
of having a single state of the system, unchanged by all rota-
tions — that is, a fully symmetric state — you get lots of less
symmetric states, all related to each other by rotations.’

‘Exactly. The whole set of motions still has circular
symmetry, in the sense that if you rotate any motion, you get
another one in that set. But it may not be the one you started
with. The symmetry isn’t so much broken as shared.’

At that moment a spotted orange shape shot across the
clearing, yowling, collided with Tarzan, and they fell in a
struggling heap. There was a brief scuffle, from which the
ape-man emerged wearing a broad smile, and cradling a
large cheetah. ‘Look, Spot’s come to visit!’

‘Yes, and using what I judge to have been a transverse
gallop,” said Jane, ‘which is one of the least symmetric gaits’
(Figure 17).

QY P =
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FIG 17 The transverse gallop of a cheetah.
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‘What symmetry does it have?’ asked Tarzan.

‘You can read it off from the phase shifts, said Jane (see
Figure 15). ‘In the transverse gallop, diagonally opposite legs
are 0.5 out of phase. There’s also a curious phase lag of about
0.1 between the front left and front right legs, which I'm not
going to explain because then it will get really technical. It’s
probably related to the efficient use of energy by the animal.
Anyway, the symmetry is this: interchange diagonal pairs of legs
and shift phase by half a period.

‘I wonder what kind of symmetry-breaking could create
that kind of motion?’ said Tarzan. But the Sun was setting.
They retired to their hut.

Next morning, Jane was awoken by a tremendous
screeching and chattering, like a pack of monkeys. When she
looked down into the clearing, that’s pretty much what she
saw. Tarzan had rigged up a complicated network of vines
between four trees (Figure 18) and was trying to use bananas

\ /

FIG 18 Tarzan’s Central Pattern Generator simulation.



66 | cCHAPTER 5

to bribe some young chimps to cling to the ends of four
hanging vines. Apes, not monkeys. Same difference.

‘It’s a model of what the biologists call a Central Pattern
Generator, said Tarzan happily. Tve been doing some more
reading. Each chimp represents a component of the animal’s
neural circuitry, controlling a leg. The vines are interconnec-
tions that couple the neurons together, so that they affect
each other. The dynamics of the circuit controls the rhythms
of the gait. Look!” He gave one chimp a shove and it began to
swing; the impulses transmitted along the linking vines
soon set the other chimps swinging in sympathy. A rather
complex pattern was just setting in when one chimp jumped
off to steal another’s banana.

‘Just a hardware problem,” said the ape-man, picking up
the miscreant and replacing him on his vine. ‘The basic
concept is OK. Each network permits a whole range of oscil-
lations. That’s why a single animal can employ several
different gaits, depending on speed, terrain, and so on. I can
get most of the standard gaits using a square arrangement.
Oddly enough, the one that I can’t seem to get is the walk.
That’s a kind of figure-8 rotating wave, in which the front
left, back right, front right, back left legs move in sequence,
with 0.25 phase lags. But I can get that if  rearrange the vines
to make two of the side-connections cross.’

‘Let me see if [ understand what you're suggesting,” said
Jane. ‘You're looking at various networks of coupled oscilla-
tors, and finding out what kinds of symmetry-breaking can
occur. Then you're trying to match the results up with actual
gaits, on the assumption that each leg is controlled by one
oscillator”
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‘Well, of course. I mean, anyone could see that. Though
each “oscillator” could be a complicated circuit in practice.
The point is, it works! Look, suppose you want a bound.
Then you set the front two “legs” moving together, and at the
same time’ — he rushed to the other end of the clearing — ‘you
set the other two legs going together, but 0.5 out of phase. Of
course, you can start the chimps swinging in any pattern you
like; but only a few patterns persist for very long. The rest get
all muddled up. So I figure those are the natural oscillation
patterns of the network. It's just as easy to get the trot, the
pace, and the pronk.

‘The two types of gallop aren’t so much harder, but I'm
having real trouble persuading these chimps to canter, I can tell
you! Probably just need more bananas to iron out the bugs.’

‘Tarzan, aside from the appalling mixed metaphors, that’s
really rather impressive —’ Jane began, but the ape-man had
dived into the bushes, shouting. ‘Bugs! Bugs! It ought to work
for bugs too!” He reappeared waving a large green beetle, and
placed it on a rock. After a hesitant start, the insect scuttled off.

‘Tripod gait,” said Jane. ‘Legs go together in threes, one
triple being 0.5 out of phase with the other (Figure 19). Front
and back one side, middle on the other. Nice symmetries.’

172
0

12 0
0 172

FIG 19 Tripod gait of an insect.
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By late afternoon Tarzan had rigged up a set of six vines
linked in a hexagon, and six puzzled chimps were swinging
happily in a tripod gait. Alternate chimps swung inwards
and outwards, 0.5 out of phase.

As she dropped off to sleep that night, Jane found herself
thinking I hope Tarzan doesn’t start wondering about...but she
fell asleep before she could complete the thought.

Just after sunrise, she was awoken by the sound of huge
trees crashing to the ground, against a background of the
most appalling screeching she'd ever heard. Tarzan was
extending the clearing to make a long track. A huge pile of
vines lay along both sides, a heap of bananas as large as their
hut at one end, and chimpanzees were charging around
everywhere. She tried to count them. There must have been
at least a hundred.

Exactly a hundred, of course. Her thought of the previous
evening completed itself. I hope Tarzan doesn’t start wondering
about centipedes. Not that centipedes actually have a hundred
legs, but then, Tarzan was very literal-minded.

A new thought occurred to Jane. Oh my God. I just hope
nothing reminds him about millipedes.
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Tiling Space with Knots

Square tiles, rectangular tiles, hexagonal
tiles, curved tiles - mathematicians have
been charmed by their patterns, startled
by their versatility, and baffled by
apparently simple questions that turn
out to be amazingly hard. But have you
ever thought about knotted tiles?



HAPES THAT TILE the plane — filling it completely
without overlapping — are a recurring theme in both
recreational and mainstream mathematics. Solids
that ‘tile’ three-dimensional space have also attracted
alot of attention. In fact, so many people have worked on these
questions that it would be easy to imagine that nothing new
remains to be done. That this is definitely not so was brought
home to me by a beautiful article in the Mathematical Intelligencer
by Colin C. Adams (Williams College). Adams has discovered
general methods for creating three-dimensional tiles with
highly intricate topology; in particular they can be knots.

All of Adams’s three-dimensional tilings are constructed
from congruent copies of one single shape, called the prototile.
The simplest three-dimensional tiling uses a cube as a
prototile, stacking the cubes like a three-dimensional chequ-
erboard. This ‘cubic lattice’ tiling might seem prosaic, but
simple modifications can create tiles with a surprisingly
complex topology, as we'll see.

Topology is ‘rubber sheet geometry’, the geometry of con-
tinuous transformations; that is, it studies those properties
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of shapes that remain unchanged when the shape is stretched,
squashed, bent, twisted, or generally deformed in a continu-
ous manner (no tearing or cutting). Such a deformation is
called a topological equivalence: for example a cube is topo-
logically equivalent to a sphere — just round off the corners.
Topological properties include fundamental concepts such
as connectedness and knottedness.

A favourite shape for topologists is the torus, shaped like a
doughnut or an automobile tyre. For the purposes of this
article I'm thinking of a solid torus — the dough of the
doughnut and not just the sugary surface. To get your mind
moving along topological lines, you should begin by
inventing a prototile that is topologically equivalent to a
torus. Think about it before reading on. Figure 20a shows
one possible solution. The prototile is a cube with a square
hole bored through the middle. Two ‘lugs’, with the same
cross-section as the hole, are placed at the middle of opposite
faces; each lug is half the length of the hole.

g

(@) (b)

FIG 20 (a) Toroidal tile formed by boring a hole through a cube and
adding matching lugs. (b) An alternative way to make a toroidal
tile.
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Topologically, this prototile is just a solid torus: if you
made it from modelling clay you could squash the lugs flat
and thenround offthe corners to get the traditional doughnut.
You can build a flat slab one cube thick from copies of this
prototile by placing them like the squares of a chessboard,
with those corresponding to a black square oriented at right
angles to those corresponding to a white square, so that the
lugs fit neatly into —and fill - the holes. Then you just stack a
pile of slabs on top of each other.

With this prototile you could make real tiles from wood
and actually fit them together one by one: they tile space but
do not interlock. An alternative, shown in Figure 20b,
involves prototiles that interlock. From now on we’ll allow
prototiles to interlock: were looking for mathematical
patterns that tile space, but we're not worried about how to
assemble them from separate tiles.

Both solutions illustrate the ‘pick-and-mix’ principle,
which can be seen most clearly in the plane (Figure 21). Start
with a simple tiling — here squares. Subdivide each tile into
several pieces, using the same subdivision in each tile. Now
assemble a new prototile by choosing one copy of each
piece — but not necessarily from the original square. The
result automatically tiles the plane. Similar constructions
apply to three-dimensional s