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Introduction

The cows are back.
If you’re new to this game, or haven’t been paying atten-

tion, Cows in the Maze is Oxford University Press’s third collec-
tion of my Mathematical Recreations columns from Scientifi c 
American and its French edition Pour La Science. The French 
edition typically contains its own special material, and for a 
time I wrote six columns a year for the American edition and 
another six for the French. And there are two earlier collec-
tions from other publishers.

Oh yes, those cows.
When we were putting together Oxford University Press’s 

fi rst collection, Math Hysteria, the editors decided to make the 
book seem even more friendly by providing cartoons for 
each chapter, and of course the cover. In a stroke of genius, 
they decided to ask Spike Gerrell. One of the chapters was on 
‘counting the cattle of the Sun’, a fi endishly complicated 
puzzle whose answer has 206,545 digits and was fi rst discov-
ered in 1880. There are reasons to believe that perhaps 
Archimedes had not intended it to be that fi endish . . . but you 
can never tell with Archimedes.

Anyway, Spike seized upon this hint of a cow-y theme, 
because he does particularly comely cows. On the cover, 
one was jumping over the Moon, and three were wearing 
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blindfolds – well, hoods, actually. If you look at the book’s 
spine you will see one cow peeping round the corner at you.

The next collection, How to Cut a Cake, was a cow-free zone, 
though Spike did come up with some chessboard horses, an 
entangled cat – in a phone cord, not related to Schrödinger 
or anything quantum – and a bemused rabbit. The opportun-
ity to compensate the cows for this injustice presented itself 
when we decided to put together another collection, and one 
of the possible topics was Cows in the Maze. Saved us the 
trouble of thinking of a title, too. 

Now, you may have thought that mathematics is a pretty 
serious business, and a herd of cows rampaging through a 
maze, watched by a gang of engineers who are either building 
the maze or demolishing it, lacks the proper gravitas. But, as 
I’ve said many times now, ‘serious’ need not equate to ‘solemn’. 
Mathematics is indeed a serious business: our civilization 
could not possibly function without it – an aspect of the 
subject that admittedly is news to many, but easy enough to 
prove to anyone who wants to know. For that reason, math-
ematics is so serious that we all need to chill out a bit, and 
stop getting so uptight about decimal points and fractions 
and parallelograms (do they do those nowadays?) that we 
conceal the great secret that makes the whole subject much 
more palatable. 

Namely: it’s fun. 
Even the serious stuff is fun, in a serious kind of way. 

Hardly anything can beat that amazing feeling when the 
little light bulb in your head goes off and you suddenly 
understand what makes a piece of mathematics tick. Math-
ematical research – a big part of my job when I’m not writing 
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books – consists of 99% banging your head against a meta-
phorical brick wall, and 1% suddenly realizing why it’s all 
totally obvious and you’ve been extraordinarily stupid. Flash!
goes the light bulb, and you shrug off the feeling of foolish-
ness on the grounds that 99.99% of the human race wouldn’t 
understand the problem, let alone the answer, and mathem-
atics always looks easy once you’ve understood it.

One of the reasons I became a mathematician was the 
monthly mathematics column in Scientifi c American – then 
titled ‘Mathematical Games’ and written by the inimitable 
Martin Gardner. Gardner wasn’t a mathematician, but it 
would be too limiting to call him a journalist. He’s a writer, 
whose interests include puzzles, magic (of the stage variety), 
philosophy, and exposing the idiocies of pseudo-science. His 
Mathematical Games column worked precisely because he 
wasn’t a mathematician, but he had an uncanny instinct for 
the interesting, the curious, and the signifi cant. He is an 
impossible act to follow, and I’ve never tried to do that. But it 
was Gardner who showed me that mathematics is much 
broader and richer than anything I’d been exposed to at 
school. 

I’m not complaining about school maths. I had a series of 
excellent teachers, one of whom – his name was Gordon 
Radford – used up most of his spare time teaching me and a 
few friends the same lesson that I was getting from Gardner: 
there’s a lot more to maths than the textbooks lead you to 
assume. School gave me the technique, but Gardner gave me 
the passion. In her autobiography, To Talk of Many Things,
Dame Kathleen Ollerenshaw – one of Britain’s truly great 
mathematics educators – recounts an incident when she was 
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at school, and let slip her hope of discovering some new 
mathematics. One of her fellow students expressed a contrary 
opinion: why bother, when there was already too much of it? 
I side with Dame Kathleen. In fact, one chapter shows that 
her ambition was fulfi lled, even though her career track went 
into education and local government. She was 82 years old at 
the time, and that was ten years ago.

Cows in the Maze can be read in any order: each chapter 
stands alone, and you can skip anything that bothers you. 
(Here’s another great mathematical secret, which I was fortu-
nate to learn at an early age: don’t get hung up on diffi cult 
details, plough ahead anyway. Often light then dawns, and if 
not, you can always go back and try again.) The only excep-
tion is a series of three chapters (originally two columns, but 
one was gigantic so I split it) on the mathematics of time 
travel. 

The topics are diverse – it’s not a textbook, it’s a celebra-
tion of the joy of mathematical investigation and discovery. 
Some chapters are in ‘story’ format, others are straight 
descriptions. I had to stop presenting the column in story 
format when my space in the American magazine was cut 
from three pages to two. The French continued to indulge 
my sense of narrative, every alternate month when there 
wasn’t an American column, until the Americans let me 
write a column every month. And, cows notwithstanding, 
the discerning reader will fi nd a great diversity of genuine 
mathematics scattered through these pages: number theory, 
geometry, topology, probability, combinatorics . . . and several 
areas of applied mathematics, including fl uid mechanics, 
mathematical physics, and animal locomotion.
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 The columns benefi ted from a lively correspondence with 
readers, and by the end they were providing about half of the 
ideas for topics. We started a ‘Feedback’ section, and I’ve 
included readers’ suggestions in most chapters. I’ve tried to 
preserve the feel of the originals, while bringing them up to 
date and removing any errors or ambiguities that I know 
about. I’ve also introduced a new feature to refl ect the 
increasing infl uence of the Internet: references to interesting 
websites.

I am grateful to my editor Latha Menon and everyone else 
at OUP who let themselves be persuaded to sanction my 
further romps with Spike’s cows, to Spike for a cow- 
bedecked cover, to Philippe Boulanger who started it all by 
letting me loose between the covers of Pour La Science, and to 
Scientifi c American for helping me to fulfi l a childhood 
dream.

Coventry, September 2009 Ian Stewart
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Dice . . .They seem such simple things, 

just cubes with numbers on them. The 

ancients used them for gambling, and for 

divining the will of the gods. The math-

ematics of dice is more recent, part of a 

wider understanding that chance has its 

own patterns. If you know how to look 

for them.

1
The Lore and
Lure of Dice



T
HE DIE, more commonly known by its plural ‘dice’, 
is one of the earliest known gambling aids. The 
Roman historian Herodotus claimed that dice were 
introduced by the Lydians in the time of King Atys, 

but Sophocles disagreed, crediting their invention to a Greek 
called Palamedes, allegedly during the siege of Troy. It may 
seem plausible that dice were invented to give the bored 
besiegers something to do while they waited for the Trojans 
to surrender, but the credit must go to others. Dice have 
been found in Chinese remains from about 600 bc. Archae-
ologists have discovered cubical dice, to all intents and 
purposes just like today’s, in Egyptian tombs dating from 
2000 bc. Other fi nds go back to 6000 bc. Dice seem to be 
one of those basic forms that originated independently in 
many different cultures. The cubical shape, however, is not 
unique. Dice of many shapes and with many strange mark-
ings have been used by North American Indians, South 
American cultures such as the Aztecs and Mayas, Polynes-
ians, Inuits, and many African tribes. They have been made 
from materials ranging from beaver teeth to porcelain. 
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The game of dungeons and dragons uses dice shaped like 
regular solids.

Dice are such simple things, but their possibilities are 
almost endless.

To stop this chapter taking over the whole book, I’m going 
to focus exclusively on standard, modern dice. These are, of 
course, cubical in shape, and usually have rounded edges and 
corners. Their key feature is a pattern of spots on each face, 
the numbers of spots being 1, 2, 3, 4, 5, and 6. Spots on oppo-
site faces sum to 7, so the faces come in three pairs: 1 and 6, 2
and 5, 3 and 4. Up to rotations of the cube, there are exactly 
two possible arrangements with this property (Figure 1), and 
one is the mirror image of the other. Nowadays virtually all 
dice of western manufacture are like Figure 1a, in which the 
faces 1, 2, 3 cycle round their common vertex in the anti-
clockwise direction. I am told that in Japan, dice with this 
handedness are used in all games except Mah-Jong, where 
mirror-image dice of Figure 1b are used instead. Oriental 
dice have a much larger spot for the number 1, and some 
spots may be red instead of black, depending on the culture.

1
2

3

6

5

4

1
3

2

6

4

5

(a) (b)

fig 1 The two different ways to number dice.
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Dice are often thrown in pairs, and a fundamental fact 
here is the probability of getting a given total. To calculate 
these probabilities – on the assumption that the dice are ‘fair’, 
meaning that each face has a probability 1/6 of coming up on 
top – we work out how many ways there are to achieve a 
given total. Then we divide that by 36, the total number of 
pairs, taking into account which die is which. To do this it 
helps to imagine that one die is red and the other blue. Then 
a total of 12, say, can occur in only one way: red die = 6, blue 
die = 6. The probability of a total of 12 is therefore 1/36. A total 
of 11, on the other hand, can occur in two ways: red die = 6,
blue die = 5, or red die = 5, blue die = 6. Its probability is there-
fore 2/36 = 1/18.

This may seem obvious, but dice are usually indistin-
guishable, and colouring them is a bit artifi cial. As illus-
trious a thinker as the great mathematician and philosopher 
 Gottfried Leibniz thought that the probabilities of throwing 
11 and 12 must be the same. He argued that there is only one
way to throw 11: one die = 6, the other = 5. There are several 
problems with this line of attack, however. Perhaps the most 
signifi cant is that it disagrees wildly with experiment, in 
which 11 comes up about twice as often as 12. Another is that 
it leads to the unlikely conclusion that the probability that 
two dice throw some total (whatever it may be) is less 
than one. Or, if you don’t like that interpretation, it implies 
that the probability of throwing 12 is bigger than 1/36.

Figure 2 shows the probabilities for all totals from 2 to 12.
One game in which an intuitive feel for these probabilities is 
crucial is craps, which dates from the 1890s. Here one player, 
the shooter, puts up a sum of money. The others ‘fade’ it – that 
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is, they bet an amount of their own choice. If the total faded 
is less than the shooter’s initial bet, then the shooter reduces 
the bet to match that total. The shooter then rolls the dice. 
A score of 7 or 11 (natural) on the fi rst roll wins outright; a 
score of 2 (snake eyes), 3, or 12 (craps) loses. Otherwise the 
shooter’s initial score, one of the numbers 4, 5, 6, 8, 9, 10,
becomes his ‘point’. He continues to roll, aiming to score the 
point again before he throws 7 (craps out). If he succeeds, he 
wins all the money; if he fails, he loses.

From Figure 2 and a few other considerations it can be 
calculated that the shooter’s chance of winning is 244/495,
roughly 49.3%. This is just less than evens (50%). Professional 
gamblers can turn this slight disadvantage into an advantage 
by two methods. One is to accept or reject various ‘side-bets’ 
with other players, exploiting superior knowledge of the 

1 2

1 3 2 2

1 4 2 3 3 2

1 5 2 4 3 3

1 6 2 5 3 4

62 3 5 4 4

63 4 5 5 4

64 5 5 6 4

65 6 5

66

1 1

2 1

3 1

4 1

4 2

4 3

5 3

6 3

5 1

5 2

6 2

6 1

1/36

2/36

3/36

4/36

5/36

6/36

5/36

4/36

3/36

2/36

1/36

fig 2 The probabilities of totals for two dice.



6 | CHAPTER 1

odds. The other is to cheat, using sleight of hand to introduce 
rigged dice into the game.

Dice can be rigged in several ways. Their faces may be 
subtly shaved so that their corners are not right angles, or 
they can be ‘loaded’ with weights. Both of these techniques 
make some throws more probable than others. More drastic-
ally, the standard dice may be replaced by ‘tops’: rigged dice 
that come in several varieties. For example, the die may bear 
only three distinct numbers of spots, with opposite faces 
having identical numbers. Figure 3 shows an example with 
the faces 1, 3, 5 only. Because each player sees at most three 
faces of a die at any given instant, and because no two adja-
cent faces of tops have the same number of spots, nothing 
appears amiss to a cursory glance. However, it is not possible 
to ensure that the arrangements at all vertices cycle in the 
‘correct’ order. Indeed, if the order is 135 anticlockwise around 
one vertex, then it must be 135 clockwise around an adjacent 
vertex, as Figure 3 shows. So an alert player can detect the 
subterfuge.

Tops can be used in craps for several purposes. A pair of 
135s, for instance, can never throw 7, so with these a player can 

5
3

1

5

3

1

fig 3 ‘Tops’ – how to cheat.
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never crap out. A combination of one 135 and one 246 cannot 
produce an even total, so with these dice, a player cannot 
make a point of 4, 6, 8, or 10. Tops must be used  sparingly if 
their presence is to be undetected – even the most naive of 
players will eventually start to wonder why they keep throwing 
odd totals. So the rigged dice are usually switched rapidly in 
and out, to change the odds just a little in the favoured direc-
tion. There are also ‘one-way tops’ in which only one number 
of spots occurs twice. Instant recognition of the arrangement 
of the spots on a die is essential knowledge for professional 
gamblers, because it can help them detect tops.

Many conjuring or party tricks use dice. A lot of them are 
based on the rule that opposite faces sum to 7. Martin Gardner 
describes one of them in his Mathematical Magic Show. The 
magician turns her back and asks a member of the audience 
to roll three standard dice and add up the top faces. Then the 
victim is told to pick up any die and add its bottom number 
to the total. Finally, the victim rolls the same die again and 
adds its top number to the previous total. Now the magician 
turns round and immediately states what the result was – 
even though she has no idea which die was chosen.

How does this work? Suppose that the dice have totals a, b,
and c, and that (say) die a is chosen. The initial total is a + b
+ c. To this is added 7 - a, making b + c + 7. Then a is thrown 
again, giving d, and the fi nal result is d + b + c + 7. The magi-
cian then looks at the three dice, which total d + b + c - so all 
she has to do is quickly add them up, and add 7.

Henry Ernest Dudeney, the great English puzzlist, includes 
a trick of a different kind in his book Amusements in Math-
ematics. Again the magician asks for three dice to be thrown 
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while her back is turned. This time the victim is asked to 
double the value of the fi rst die and add 5; then multiply the 
result by 5 and add the value of the second die; then multiply 
the result by 10 and add the value of the third die. Upon being 
told the result, the magician immediately says what the three 
dice were. The result, of course, is now 10(5(2a + 5) + b) + c,
or 100a + 10b + c + 250. So the magician subtracts 250 from 
the result, and the three digits of the answer are the numbers 
on the dice.

Games with dice need not involve any random element. 
One such game begins by one player choosing a ‘target’ 
number, such as 40. The other player places a single die on 
the table, with some chosen face on top – say 3. This value 
starts a running total. The other player may now roll the die 
through a quarter turn – which here reveals either 1, 2, 5, or 
6. Whatever comes up top is added to the running total. If, 
for instance, the second player turns the die to show 2, then 
the running total becomes 3 + 2 = 5. The players take turns to 
roll the die through a quarter turn, in whatever direction 
they wish, and the running total accumulates. The fi rst player 
to make the running total bigger than the target loses.

There is a systematic method for analysing such games, 
explained in detail in my book Another Fine Math You’ve Got 
Me Into. The idea is to divide positions of the game into two 
classes, ‘win’ and ‘lose’, and work backwards from the end, 
using the following two principles:

• If any move from the current position leads to a 
winning position (for the other player) then the 
current position is a losing one.
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• If some move from the current position leads to a 
losing position (for the other player) then the current 
position is a winning one.

For instance, if the current running total is 39 and face 1 is 
uppermost, then the next player has no choice but to exceed 
40, so this position is a winning one. In order actually to win,
you have to play the appropriate move.

In carrying out this calculation, it is best to work with the 
difference between the current total and the target – that is, 
the ‘effective target’ from that stage onwards. In the above 
example, the effective target is 40 - 39 = 1, and whatever move 
the next player makes, they must exceed it. On the other 
hand, if face 2 is uppermost when the effective target is 1, then 
the next player can turn the die so that 1 is on top, and win.

The table below summarizes the status of various states of 
the game, for effective targets between 0 and 25. Here the 
state – the face that is uppermost – is shown at the left of the 
rows, the effective total is at the top of the columns, and each 
column either shows ‘L’ for a losing position, or a list of 
winning moves for a winning position. Notice that states 1
and 6 are in effect the same, since they lead to the same four 
possible moves 2, 3, 4, 5. The same goes for states 2/5 and 3/4.
So the table has only three rows.

Effective target
status:

1 2 3 4 5 6 7

1 or 6 l 2 3 4 5 3 234
2 or 5 1 1 3 4 l 36 346
3 or 4 1 12 l l 5 6 26
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I’ve laid out the tables to emphasize the main feature: 
columns 17–25 are the same as columns 8–16. This pattern, 
once it becomes established, must repeat indefi nitely, so 
columns 26–34, 35–43, 44–52, and so on, are also the same as 
8–16. The reason is that any move reduces the effective target 
by 6 at most, so the entries in a given column depend only on 
those in the six columns to its left. So as soon as a block of six 
(or more) consecutive columns repeats entries seen in a 
previous block, the pattern must repeat indefi nitely.

Such repetitions are to be expected in all games of this 
general kind, because there are only fi nitely many possible 
columns. But we’re lucky that the repeating block occurs so 
soon, and is so short. It leads to a complete, but far from 
intuitive, prescription for a winning strategy. Take your 
chosen target and repeatedly subtract 9 until you fi rst get 
into the range 0–16. Then look in the resulting column to see 
whether the position is a win or lose – and if it’s a win, play 
one of the recommended winning moves.

Effective target
status:

8 9 10 11 12 13 14 15 16

1 or 6 4 l 5 23 34 4 5 3 234
2 or 5 4 l 1 3 34 4 l 36 34
3 or 4 l l 15 2 l l 5 6 2

Effective target
status:

17 18 19 20 21 22 23 24 25

1 or 6 4 l 5 23 34 4 5 3 234
2 or 5 4 l 1 3 34 4 l 36 34
3 or 4 l l 15 2 l l 5 6 2
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For instance, suppose the target is 1000. Subtracting 9s
repeatedly we get down to 19, which is still bigger than 16,
and fi nally to 10, where we stop. Column 10 tells us that we 
can always make a winning move. If the state is 1/6 then we 
move the die to show 5; if the state is 2/5 we move it to 1; and 
if the state is 3/4 we move it to 1 or 5. Keep repeating this 
procedure, and eventually you must win.

If you’re unlucky, and the initial position is a losing one, 
you have to hope that your opponent doesn’t know the 
strategy. Make any move you like, wait till they’ve made 
theirs, and repeat the calculation. You should soon hit a 
winning position, unless a miracle is in progress, after which 
you control the game completely. With a moderately heroic 
effort, you can commit the entire table to memory. Or you 
can simplify it by remembering only one winning move for 
each state, rather than the whole list. In fact, if you do that 
intelligently, you can ignore all columns after the eleventh, 
reducing the amount to be learned to something fairly 
manageable.

Other dice problems involve modifi ed dice with non-
standard numbering. For example: can you think of a way to 
label two dice, using only numbers 0, 1, 2, 3, 4, 5, or 6, to get 
a pair of dice such that all totals from 1 to 12 are equally likely? 
(See the end of the chapter for the answer.) Perhaps the most 
counter-intuitive dice phenomenon is that of ‘non-transitive 
dice’. Make three dice A, B, and C, numbered like this:

A: 3 3 4 4 8 8
B: 1 1 5 5 9 9
C: 2 2 6 6 7 7
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Then, in the long run, B beats A. In fact, die B throws a higher 
total than A with probability 5/9. Similarly C beats B with 
probability 5/9. So obviously C beats A, right? No, A beats C 
with probability 5/9. The next table justifi es these assertions: 
it lists the winner for each combination of dice. For example 
if B is playing C, look at the second array in the table. Suppose 
B throws 5 and C throws 6. Then C has the higher throw, so 
C wins. Therefore column 5, row 6 of the array is C.

A 3 4 8 B 1 5 9 C 2 6 7
B C A
1 A A A 2 C B B 3 A C C
5 B B A 6 C C B 4 A C C
9 B B B 7 C C B 8 A A A

In the fi rst array there are 5 Bs and 4 As, so B beats A with 
probability 5/9, as I claimed. In the second array there are 5 Cs 
and 4 Bs, so C beats B with probability 5/9. In the third array 
there are 5 As and 4 Cs, so A beats C with probability 5/9.

You can make a fortune with a set of such dice! Let your 
opponent choose one; then you choose whichever one beats 
it (in the long run, with probability greater than evens). 
Repeat. You will win on 55.55% of all plays. Yet your oppo-
nent has a free choice of the ‘best’ die!

A word of warning, though: don’t place too much reliance 
on probability theory without making the rules of the game 
very precise. In his marvellous little book The Broken Dice, Ivar 
Ekeland tells the story of two Nordic kings who played dice 
to decide the fate of a disputed island. The King of Sweden 
rolled two dice and scored a double 6. This, he boasted, was 
unbeatable, so King Olaf of Norway might as well give up. 
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Olaf muttered something to the effect that he, too, might 
score a double 6, and cast his two dice. One turned up 6; the 
other split into two pieces, one showing a 1 and the other a 6.
Total: 13! All of which goes to show that what you think is 
possible depends upon how you model the problem.

If the tale is true, King Olaf was extraordinarily fortunate. 
A few cynics think that Olaf rigged the whole scam.

FEEDBACK

Many readers wrote in with their own variations on the set 

of three ‘non-transitive’ dice in the November 1997 column. 

My dice had faces (each occurs twice) as follows: A:(3,4,8);

B:(1,5,9); C:(2,6,7). Then B beats A with probability 5/9, C 

beats B with probability 5/9, and A beats C with probability 

5/9. George Trepal of Gehring, Florida pointed out that these 

sets of numbers, suitably arranged, form the columns of a 

magic square – an array of numbers whose rows, columns, 

and diagonals all add up to the same amount. The magic 

square concerned is

 8 1 6

 3 5 7

 4 9 2
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Moreover, there is a curious ‘duality’: if the rows of this 

square are used for faces on dice instead, say A:(8,1,6);

B:(3,5,7); C:(4,9,2) – again with each face occurring twice if 

you want six-sided dice instead of unorthodox three-sided 

ones – the resulting set is again non-transitive, and A beats 

B with probability 5/9, B beats C with probability 5/9, and C 

beats A with probability 5/9.

With the magic square

 8 1 9

 7 6 5

 3 11 4

the results are interestingly different. For the rows, A beats 

B with probability 6/9, B beats C with probability 6/9, and C 

beats A with probability 5/9. For the columns, B beats A 

with probability 5/9, C beats B with probability 5/9, and A 

beats C with probability 5/9.

Trepal’s best set – using the smallest numbers – follows 

the 6/9, 6/9, 5/9 pattern, and is: A:(1,4,4); B:(3,3,3); C:(2,2,5). 

Zalman Usiskin of the University of Chicago raised and 

answered a natural question. Can you make the advantages 

bigger than 5/9? More precisely, given three non-transitive 

six-sided loaded dice, what is the largest possible probability 

p for which all three pairs provide a win with probability at 

least p? By ‘loaded’ I mean that the faces need not appear 

with equal probability. The answer is a new occurrence of a 

famous number, the golden number
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φ += 1 5
2

.

Suppose that:

A scores 4 with probability f - 1 and 1 with probability 

2 - f;

B always scores 3;

C scores 2 with probability f - 1 and 5 with probability 

2 - f .

Then A beats B, B beats C, and C beats A, all with probability 

f - 1, which is approximately 0.618. This is significantly 

larger than 5/0.9 = 0.555, and it is the largest advantage 

possible.

Loaded dice can be simulated, to high accuracy, by fair 

dice with lots of faces, by repeating each number suitably 

many times. Using an icosahedron, with 20 faces, we can 

achieve a figure of 16/25 = 0.64, as follows:

A has 4 on 12 faces and 1 on 8 faces;

B has 3 on all 20 faces;

C has 2 on 12 faces and 5 on 8 faces.

ANSWER

To make two dice for which all totals from 1 to 12 equally 

likely, one must have faces 1, 2, 3, 4, 5, 6, and the other 0, 

0, 0, 6, 6, 6.
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Some of the most difficult questions in 

mathematics are inspired by everyday 

life. Who would have thought that the 

simple act of building fences can suggest 

problems that no one has yet been able 

to solve?

2
Pursuing Polygonal 

Privacy



O
NE OF THE most appealing areas of mathematics, 
full of simple problems whose solutions are 
currently unknown, is combinatorial geometry. In 
such problems, the aim is to fi nd arrangements of 

lines, curves, or other geometric shapes that achieve some 
objective in the most effi cient manner possible. For example, 
the Mother Worm’s Blanket problem1 asks: what is the shape 
of the smallest area that can cover a curve of unit length, no 
matter how that curve is arranged? Although many candidate 
shapes have been proposed, no such shape has yet been proved 
to have minimal area, and it remains possible that the problem 
has no solution at all. Recreational mathematicians can have a 
lot of fun with such questions, because there is plenty of scope 
for experiment and ingenuity. Even if it is not possible to prove 
that some particular shape is the best possible, you can often 
fi nd improvements on those that were known previously.

This chapter concentrates on a puzzle known as the 
Opaque Square Problem, along with several fascinating 

1 See Game, Set and Math, Chapter 1.
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 variations. It was brought to my attention by Bernd Kawohl 
(Cologne), and the discussion is based on an article he sent 
me. Suppose you own a square plot of land, whose sides, for 
simplicity, are assumed to have unit length. For some reason 
best known to you – privacy, say – you want to build a fence 
on your land that will block any straight line of sight passing 
across it. Moreover, to save money, you want the fence to be 
as short as possible, subject to blocking every line of sight. 
How do you arrange the fence?

The fence can be as complicated as you like, with lots of 
different pieces, joined together however you wish. The 
pieces of fence can be curved or straight. In fact, it could be 
any shape for which some generalization of the concept 
‘length’ makes sense.

Perhaps the most obvious solution is to build a fence round 
the entire perimeter, which gives a total length of 4 (Figure 
4a). A few moments’ thought reveals an improvement: leave 
out one side to create a square-cornered U shape (Figure 4b). 
Now the length reduces to 3. This is in fact the shortest fence 
if we make the additional assumption that the fence must be 
a single polygonal or curved line. Why? Because every fence 
that renders the square opaque must contain all four corner 
points (otherwise there is a ‘line of sight’ passing through a 

(a) (b) (c) (d)

fig 4 Opaque fences for the square.
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corner) and the shortest single curve that contains all four 
corners is composed of three sides of the square.

However, a more complicated fence exists with length 
+1 3 = 2.732, as in Figure 4c. The angles between the lines 

here are all 120°. Arrangements of this kind, in which the 
fence is connected, are called Steiner trees, and it has long 
been known that 120° angles keep the length of the tree as 
short as possible.2 This is the shortest connected fence. None-
theless, we haven’t fi nished. If we allow the fence to have 
several disconnected pieces, the total length can be reduced 
to 2.639 as in Figure 4d. Here the three lines in the upper half 
of the diagram again meet at angles of 120°. This fi nal attempt 
is widely believed to be the shortest possible opaque fence, 
but nobody has yet found a proof.

Indeed, it has not even been proved that a shortest opaque 
fence exists. The main problem in proving existence is that it 
might (perhaps!) be possible to keep shortening the length 
by making the fence more and more complicated. Vance 
Faber and Jan Mycielski have proved that for any given 
number of connected components, there exists a shortest 
opaque fence. What is not known is whether the minimal 
length keeps shrinking as the number of components 
increases without limit, or whether a fence with an infi nite 
number of components can out-perform all fences with 
fi nitely many components. It seems unlikely that either of 
these things can happen, but neither has yet been ruled out.

Kawohl has given a lovely proof that Figure 4d is the 
shortest fence having exactly two components. First, he 

2 See How to Cut a Cake, Chapter 12.
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shows that one component must contain three corners of 
the square and the other must contain the remaining corner. 
The fi rst component must therefore be the shortest Steiner 
tree linking three corners, and it is known that this has the 
shape shown in the upper part of the fi gure. The convex hull 
of this shape – the smallest convex region that contains it – is 
the triangle formed by cutting the square in two along a diag-
onal. The second component must be the shortest curve that 
joins the fourth corner to this triangle, and this is clearly the 
diagonal line from that corner to the centre of the square.

What about shapes other than the square? If the plot of 
land is an equilateral triangle, then the shortest opaque fence 
is a Steiner tree, formed by joining each corner to the centre 
along a straight line (Figure 5a). If the plot is a regular 
pentagon, then the shortest known opaque fence comes in 
three pieces, as in Figure 5b. One piece is a Steiner tree linking 
three adjacent corners of the pentagon. The second is a 
straight line joining the fourth side to the convex hull of the 
fi rst three corners. The third is a straight line joining the fi nal 

(a) (b)

fig 5 Opaque fences for the equilateral triangle and the regular 
pentagon and hexagon.
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corner to the convex hull of the fi rst four. Again, no proof 
exists that this fence has minimal length, but no shorter 
opaque fence has been found.

For the regular hexagon, the best fence known is similar, 
but because the corner angles of the hexagon are 120°, the 
Steiner tree becomes a series of edges of the hexagon. In fact, 
it consists of three consecutive edges, linking four adjacent 
corners together. Then the second component of the fence is 
the shortest line joining a fi fth corner to the convex hull of 
the fi rst four, and the third component is the shortest line 
joining the sixth corner to the convex hull of the fi rst three.

It has not been proved that this fence is optimal, but the 
construction extends to give a conjectured minimal fence for 
any regular polygon with an even number of sides (Figure 6). 
Divide the polygon into two by a diameter joining two 
 opposite corners. The fi rst component of the fence is formed 
from all of the edges that lie in that half, forming the polyg-
onal analogue of a semicircle. The second component is the 
shortest line linking the next corner to the convex hull of the 

fig 6 Conjectured shortest opaque fence for an even-sided regular 
polygon.
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fi rst component, the third component is the shortest line 
linking the next corner to the convex hull of the fi rst two 
components, and so on.

A polygon with a large number of sides is very close to a 
circle, and we can ask for the shortest fence that makes a 
circle opaque. By choice of units, we may assume that the 
circle has unit radius. The simplest fence that comes to mind 
is the circumference of the circle, of length 2p = 6.283 (Figure 
7a). However, if the fence is permitted to lie outside the plot of 
land, we can do better. Remove half the circumference to 
leave a semicircle, of length p, and extend it by adding two 
lines of length 1 that are tangent to the circle at the ends of 
the semicircle, forming a U (Figure 7b). This is an opaque 
fence for the circle, and its length is p + 2 = 5.142.

It can be proved that Figure 7b is the shortest possible fence 
if we insist that the fence be a single curve – no branch points 
and all in one piece. There is another way to state its ‘opaque-
ness’ property.3 Suppose that a straight pipe or telephone line 

3 See Math Hysteria, Chapter 6.

(a) (b)

fig 7 Opaque fences for the circle. (a) The circle itself, length 2p for 
a circle of radius 1. (b) A shorter fence, length p + 2.
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is known to pass within distance 1 of some specifi c point: 
what is the shortest trench we can dig that is guaranteed to 
fi nd it? We know that the pipe must cross the circle of unit 
radius centred at that point, and must therefore hit any 
opaque fence for that circle. So we should dig a trench in the 
form of an opaque fence.

With the trench version of the puzzle it is natural to allow 
the trench to go outside the circle – but fences are normally 
built on the owner’s land, not on their neighbours’. Kawohl 
shows that the shortest opaque fence lying entirely inside the 
circle of unit radius also has length no greater than p + 2. He 
does this by considering the conjectured fence for an even-
sided polygon with a large number of sides, closely approxi-
mating the unit circle. A trigonometric calculation proves 
that the length of a fence like the one shown in Figure 6, but 
with more sides to the polygon, is then very close to p + 2.
The difference can be made as small as we please by taking a 
large enough number of sides.

There is much here for the amateur to investigate. Are 
the conjectured fences truly the shortest possible, or is 
there a way to shorten them further? Can anything be 
proved about the conjectured solutions? What about other 
shapes –  arbitrary polygons (convex or not), ellipses, 
 semicircles . . . And what about the same problem in three 
dimensions: the opaque cube and sphere? Now the aim is to 
minimize the total area of the fence.
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FEEDBACK

Martin Gardner raised the problems of the opaque cube and 

sphere in 1990, and Kenneth A. Brakke of Susquehanna 

University tackled them in 1992 (see Further Reading and 

Website). Brakke’s best solution for a unit cube has an area 

of 4.2324.

WEBSITE

OPAQUE CUBE :

 http://www.susqu.edu/brakke/opaque/default.html

http://www.susqu.edu/brakke/opaque/default.html


This page intentionally left blank 



Some mathematical games are truly

mathematical, and there is no better 

example than Hex. All you have to do is 

place your counters on a honeycomb-

patterned board, and connect two 

opposite edges. Easy? There’s an entire 

book devoted to it.

3
Making Winning 

 Connections



W
HAT DO A Danish poet-mathematician and a 
Nobel laureate have in common? One of the 
best mathematical board games ever invented, 
that’s what. Nowadays it’s usually called Hex, 

but its early incarnations bore a variety of names. Cameron 
Browne’s Hex Strategy takes a comprehensive look at Hex and 
how to win it. Hex is at least as addictive as front-line 
computer games, and gives your brain a far more stimulating 
workout.

Hex is a two-player game, played on a board made 
from hexagonal cells, arranged in the shape of a rhombus 
(Figure 8). The standard board size is 11 ´ 11, but other sizes 
provide entirely playable games. Each player ‘owns’ two 
opposite edges of the board; the four corner cells are joint 
property. One player has a stock of black counters, the other 
a stock of white counters – stones from the oriental board 
game Go are ideal.

The rules are astonishingly simple. Players take turns to 
place one of their counters on an unoccupied cell of the 
board – who starts is decided by tossing a coin or any other 
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mutually agreed method. A player wins by constructing a 
connected chain of counters joining the two edges that they 
own. The chain may have additional counters, side-branches, 
or loops, and need not be connected to other pieces of that 
colour. All that matters is that some series of counters forms 
a connected path from one edge to the opposite edge. It 
sounds simple, but the simplicity is deceptive. Hex is a game 
of deep subtlety.

Hex was fi rst invented by Piet Hein, a Danish mathemat-
ician who is also famous for his short poetry (known as 
‘grooks’) and numerous other offbeat ideas. He called the 
game Polygon, and it fi rst saw the light of day in the Danish 
newspaper Politiken on 26 December 1942. The mathemat-
ician John Nash reinvented it independently in 1948 when he 
was a graduate student at Princeton. In 1969 Nash won the 
‘Nobel Prize’ in economics, more precisely the Sveriges 
Riksbank Prize in Economic Sciences in Memory of Alfred 
Nobel. His winning idea was the concept of ‘Nash equilib-
rium’ in game theory, and his life is the subject of the bril-
liant biography A Beautiful Mind. In 2001 this was made into 

black

black

white

white

fig 8 The Hex board.
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a movie starring Russell Crowe as Nash, which won four 
Oscars. At Princeton the game was known as Nash, or some-
times John – because it was often played on hexagonal bath-
room tiles.4

In the mid-1950s Martin Gardner wrote about Hex in his 
Mathematical Games column, and his article is reprinted in 
Mathematical Puzzles and Diversions from Scientifi c American.
Overnight it became a craze in virtually every mathematics 
department in the world. For example in 1968, when I fi rst 
arrived at the University of Warwick as a graduate student, a 
group of us started a magazine called Manifold. The fi rst issue 
had a Hex board drawn on the front and back covers (half on 
each) and an article about it between them. But it is now 
more than 40 years since Gardner described Hex to Scientifi c 
American’s readers, so I think it is time to introduce it to a 
new generation.

Some simple mathematical analysis illuminates the game. 
Since pieces are never removed, the number of moves is 
fi nite – at most 121 for the 11 ´ 11 board. A connected chain 
from edge to edge for one player necessarily blocks any 
connected chain from edge to edge for the other player, which 
makes it intuitive (but not entirely straightforward to prove) 
that eventually one player or the other must win. The basic 
point is that black, say, can only be prevented from forming 
a winning chain if white creates such a chain herself fi rst.

It’s an interesting challenge to prove the ‘obvious’ fact that 
if the board is fi lled with black and white stones, then one 
colour must connect two opposite edges. It’s clear that both 

4 ‘Bathroom’ in the American sense, often colloquially called a ‘john’.
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colours cannot do this at the same time, since the chains 
involved must cross. It’s also plausible that if, say, black stones 
do not connect opposite sides, then that must happen because 
a chain of white stones is getting in the way. However, a 
complete proof is less obvious. Suppose, for the sake of argu-
ment, that black’s stones do not include a chain that connects 
the two black edges. Consider one ‘component’ of the black 
regions – all the black stones connected (by other black 
stones) to a black edge. Now look at the ‘boundary’ of this 
region – all the immediately adjacent white stones. Clearly, 
this set of white stones must connect the two white 
edges . . . but why?

Alternatively, we can prove that one player must have a 
winning strategy. Then the above claim easily follows. In 
fact, it can be proved that with proper play, the fi rst player 
should always win. The proof, found by Nash, uses a general 
technique called ‘strategy stealing’. Suppose, for the sake of 
argument, that white plays fi rst, and there is a strategy that 
guarantees a win for the second player, black. If so, then 
white can employ unbounded brainpower to work out what 
that strategy is. She can then use this alleged second-player-
wins strategy to beat black, as follows. White makes any 
move, and promptly forgets it. She now pretends that black 
is opening the game, and that she is the second player, not 
the fi rst. Whichever move black makes, white plays the 
correct response according to the second-player strategy. 
There is one minor modifi cation, however. Sometimes that 
strategy will require her to place a counter in the position 
already occupied by her fi rst ‘forgotten’ move. If so, no 
problem: the desired cell is already occupied by a white 
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counter, so the strategy is already complied with. She 
 therefore makes a new move, in any unoccupied cell, and 
this becomes the new ‘forgotten’ move.

Continuing in this way, white can force a win. But now we 
fi nd ourselves in a curious situation: by stealing the alleged 
second-player-wins strategy in this manner, white has played 
fi rst – and won, no matter what moves black makes. The 
only way out of this logical impasse is that there never was a 
second-player-wins strategy. Since this game is fi nite and 
one player must eventually win, this implies that there must 
exist some fi rst-player-wins strategy.

Observe that the second player cannot steal a fi rst-player-
wins strategy. Also, convince yourself that strategy stealing 
does not work for games like chess, where moves needed later 
in the strategy may be unavailable earlier on. If you can do 
these two things, you’ll understand the proof.

At fi rst sight this result renders the game pointless, because 
both players know who ought to win if they exercise perfect 
play. However, a similar issue arises in many other games. 
The most impressive example is draughts (the British name 
for what our American cousins call chequers), now known 
to be a draw if both sides play perfectly. The computer- 
assisted proof, organized and orchestrated by Jonathan 
Schaeffer, took 18 years; the main problem is the gigantic 
number of positions and potential lines of play. Yet rational 
adults remain happy to play draughts, because the perfect 
strategy is so complex that the human mind cannot imple-
ment it unaided. The proof that the fi rst player should always 
win a game of Hex is even more elusive; it is an existence 
proof only, so the proof does not tell us an explicit winning 
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strategy, no matter how complicated. In fact, the largest 
board for which a winning strategy is actually known is 9 ´ 9,
a discovery made by Jing Yang of the University of Manitoba 
(see Websites). So even on a 10 ´ 10 board, the fi rst player 
knows that in principle he ought to win, but has no idea how 
to go about doing it. And if that still doesn’t seem fair to the 
second player, many people allow an optional rule: the 
second player may elect to swap the opening piece for one of 
her own, once it has been played, instead of playing on a 
new cell.

A full discussion of the subtlety of Hex would, and does, 
occupy an entire book. So I’ll focus on just two features, to 
raise awareness of the game’s subtlety. The fi rst, which 
rapidly becomes clear to anyone who tries the game, is that 
cells do not have to be occupied in order to play a strategic 
role. Figure 9a shows a bridge, in which two non-adjacent 
cells (here occupied by black) share two cells that touch both. 
As long as both of the latter cells remain unoccupied by 
white, the two former cells are in effect already joined – for 
as soon as white plays on one of the intermediate cells, black 

b
d

(b)(a)

fig 9 (a) A bridge. (b) Overlapping bridges don’t work.
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can play on the other. At the fi rst level of play above rank 
novice, players usually attempt to build chains of bridges in 
the hope that their opponent won’t notice. A bridge is by no 
means invincible, however. A black bridge can be defeated if 
white contrives to occupy one of its intermediate cells, whilst 
simultaneously threatening a winning move elsewhere. 
Nevertheless, this is usually far from easy, so it is best to stop 
your opponent building too many bridges.

A useful general principle is that a player’s entire position 
is only as strong as its weakest link. If your opponent can 
attack some part of your incipient chain with good hopes of 
success, then you should either try to strengthen your own 
weakest link, or attack theirs. However, you shouldn’t do this 
automatically on all occasions, because your opponent may 
notice and lay a subtle trap.

Another useful principle is to sneak up on your oppo-
nent’s weaknesses from some distance away. Instead of 
playing a counter smack in the middle of their weak link, for 
instance, you can mentally map out a chain of bridges and 
play somewhere along that chain. By the way, don’t make the 
mistake of forming a chain of bridges where the interme-
diate cells of two bridges overlap (Figure 9b), because when 
the opponent plays on the overlap she attacks two bridges at 
once. You can defend one – but not both.

Several levels of play above bridges we encounter ladders. 
These provide subtler opportunities and problems. A ladder 
arises when one player tries to form a connection to an edge 
but is pushed away at a fi xed distance by their opponent, so 
that both players start forming long forced chains of counters, 
parallel to each other. Figure 10a shows the start of a ladder, 
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black

black

white

white
p

q

(a)

black

black

white

white
(b)

black

black

white

white
p

q

ladder

block

(c)

fig 10 (a) Start of a ladder. (b) Where it leads. (c) Blocking a 
ladder.
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with black to move. Black has no option except to play at cell 
p, otherwise white can force a win. By the same token, white 
now has to play at q. If black keeps trying to force a connec-
tion to the same edge (and for several moves she must do this 
or lose) then white is forced to keep blocking, and a long 
sequence of white counters begins to extend along the edge, 
with a black chain next to it. What black has failed to notice, 
however, is that if this process continues, white will win 
(Figure 10b). It is important to anticipate the occurrence of 
ladders, and to block your opponent’s ladders before they get 
started. If black had an extra counter (Figure 10c) near the 
white edge, then black would win the ladder exchange.

Hex Strategy considers these issues, and many others, in 
considerable depth. It also discusses a host of variations on 
the basic Hex game. For example the game of Y is played on 
a triangular board (Figure 11) and a player wins by forming a 
chain that touches all three edges. The strategy-stealing proof 
works here, by the way, so the fi rst player must have a 

fig 11 Board for the game of Y.
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winning strategy. But again, no explicit winning strategy for 
player one is known, except on very small boards. Hex can 
be played on a map of the United States, with states acting as 
cells, and north–south or east–west as the edges to be 
connected. Here the fi rst player can force a win by playing in 
California – you may enjoy working out how play then 
proceeds. Hex can also be played on a sphere, tiled with 
hexagons and pentagons. Since there are no edges, the fi rst 
player to surround at least one cell (unoccupied or occupied 
by their opponent) wins.

WEBSITES

GENERAL :

 http://en.wikipedia.org/wiki/Hex_(board_game)

  http://www.swarthmore.edu/NatSci/math_stat/webspot/

 Campbell,Garikai/Hex/index.html

STRATEGIES FOR THE 7 ́  7, 8 ́  8, AND 9 ́  9 BOARDS:

 http://www.ee.umanitoba.ca/~jingyang/

PERFECT PLAY AT DRAUGHTS AND OTHER GAMES:

 http://en.wikipedia.org/wiki/Perfect_play#Perfect_play

http://www.swarthmore.edu/NatSci/math_stat/webspot/Campbell,Garikai/Hex/index.html
http://www.swarthmore.edu/NatSci/math_stat/webspot/Campbell,Garikai/Hex/index.html
http://www.ee.umanitoba.ca/~jingyang/
http://en.wikipedia.org/wiki/Hex_(board_game)
http://en.wikipedia.org/wiki/Perfect_play#Perfect_play
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Prime numbers continue to puzzle the 

world’s mathematicians. The commonest 

gap between successive primes appears 

to be 6, and that ’s certainly true up to a 

trillion or so. Given this vast quantity of 

‘experimental’ evidence, are we justified 

in concluding that 6 is always the 

commonest gap, no matter how big the 

numbers become?

4
Jumping Champions



M
ATHEMATICS IS FULL of surprises. Who would 
have imagined, for instance, that something as 
straightforward as the natural numbers 1, 2, 3,
4, . . . could, with minimal effort, give birth to 

anything as baffl ing as the prime numbers 2, 3, 5, 7, 11, . . .? The 
pattern of natural numbers is simple and obvious: whichever 
one you’ve got, it’s easy to work out the next one. You can’t say 
that for the primes, yet it is a simple step from natural numbers 
to primes: just take those that have no proper divisors.

We know a lot about the primes, including some powerful 
approximate formulas that provide good estimates even 
when exact answers aren’t forthcoming. For example, the 
Prime Number theorem, proved in 1896 by Jacques Hadamard 
and (independently) Charles-Jean de la Vallée Poussin, states 

that the number of primes less than x is approximately 
log 

x
x

,

where log denotes the natural (base e) logarithm. So, for 
instance, we know that there are roughly 4.3 ´ 1097 primes 
with fewer than 100 digits – but the exact number is a total 
mystery.
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There are many more things about primes that we don’t 
know. A decade ago, Andrew Odlyzko (AT&T), Michael 
Rubinstein (University of Texas), and Marek Wolf (Wrocław) 
turned their attention to the gaps between successive primes. 
The problem they discussed is: Up to some limit x, what is 
the commonest gap between successive primes? Harry 
L. Nelson had raised this question in the Journal of Recreational 
Mathematics. Later John Horton Conway (Princeton Univer-
sity) named the associated numbers jumping champions.

The primes up to 50 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
41, 43, 47. The sequence of gaps – the differences between 
each prime and the next – goes 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2,
4. The number 1 appears once (and once only, since all primes 
except 2 are odd) and the rest are even. Here the gap 2 occurs 
six times, the gap 4 occurs four times, and the gap 6 occurs 
twice. So when x = 50, the commonest gap is 2, and this 
number is a jumping champion.

Sometimes, several gaps are equally common. For 
instance, when x = 5 the gaps are 1, 2 and each occurs once. 
After that, the sole jumping champion is 2 until we reach x =
101, when 2 and 4 are tied for the honour. After that, the 
jumping champion is either 2, 4, or both until x = 179, when 
2, 4, and 6 are involved in a three-way tie. At that point the 
challenge from 4 and 6 dies away, and 2 reigns supreme until 
x = 379, where it is tied with 6. From x = 389 the jumping 
champion is mostly 6, occasionally tied with 2 and/or 4, but 
in the range x = 491 to 541 the jumping champion reverts to 
4. From x = 947 onwards the sole jumping champion is 6,
and a computer search shows that this continues up to at 
least x = 1012.
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It seems reasonable to conclude that apart from some 
initial competition from 1, 2, and 4, the only long-term 
jumping champion is 6. The computer evidence in favour 
seems strong. The now-defunct journal Experimental Math-
ematics was devoted to just such problems, and it was virtu-
ally unique among mathematics journals in that it existed for 
researchers to publish unproved conjectures obtained with 
the aid of computer calculations. This does not represent a 
weakening of the mathematical requirement of proof, 
because the articles clearly state that proofs are lacking. 
Instead, the journal’s aim is to suggest interesting problems 
for mathematicians to answer with the usual logical rigour.

All number theorists know that there is evidence, and 
there is evidence. A pattern that persists up to numbers of a 
trillion or so may well change as the numbers get bigger. 
This problem may well be a case in point, for Odlyzko and 
colleagues provide a persuasive argument that somewhere 
near x = 1.7427 ´ 1035 the jumping champion changes from 6
to 30. They also suggest that it changes again, to 210, near x =
10425. They support these suggestions with some non- 
rigorous but careful theoretical analysis, and some carefully 
chosen numerical experiments.

Except for 4, the conjectured jumping champions fi t into 
an elegant pattern. This becomes obvious if we factorize 
them into primes:

2 = 2
6 = 2 ´ 3
30 = 2 ´ 3 ´ 5
210 = 2 ´ 3 ´ 5 ´ 7.
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Each number is obtained by multiplying together successive 
primes up to some limit. These numbers are called primorials
(like factorials but using primes), and the next few are

2310 = 2 ´ 3 ´ 5 ´ 7 ´ 11
30030 = 2 ´ 3 ´ 5 ´ 7 ´ 11 ´ 13
510510 = 2 ´ 3 ´ 5 ´ 7 ´ 11 ´ 13 ´ 17
11741730 = 2 ´ 3 ´ 5 ´ 7 ´ 11 ´ 13 ´ 17 ´ 23.

Oldlyzko and colleagues’ main conclusion is the Jumping 
Champion conjecture: the jumping champions are precisely 
the primorials, together with 4. The basis for this suggestion 
is another conjecture, known as the Hardy–Littlewood 
k-tuple conjecture. It was stated by Godfrey Harold Hardy 
and John Edensor Littlewood in 1922, and it is about patterns 
in the gaps between primes.

Anyone who looks at the sequence of primes notices that 
every so often two consecutive odd numbers are prime: 5
and 7, 11 and 13, 17 and 19. The Twin Prime conjecture states 
that there are infi nitely many such pairs. They can certainly 
get very large – the largest known in September 2009 are

65,516,468,355 ´ 2333,333-1 65,516,468,355 ´ 2333,333 + 1

with 100,355 digits each. (As an aside: prove that twin primes 
always have the same number of decimal digits. If that seems 
obvious, here’s a second challenge: if ‘decimal’ is replaced by 
‘base n’, for which values of n is the analogous statement 
false?) Moreover, there is a probabilistic calculation that 
strongly suggests the conjecture is correct. It is based on the 
idea that primes occur ‘at random’ among the odd numbers, 
with a probability based on the Prime Number theorem. 
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Of course this is nonsense – a number is either prime or not, 
there isn’t a probability involved – but it is plausible nonsense 
for this kind of problem. According to the calculation, the 
probability that the list of twin primes is fi nite is zero.

What about three consecutive odd numbers being prime? 
There is one example: 3, 5, 7. It is the only example, because 
given any three consecutive odd numbers, one of them is a 
multiple of 3 (so is not prime unless it happens to equal 3,
whence the sole example). However, the patterns p, p + 2, p + 6
and p, p + 4, p + 6 cannot be ruled out by such arguments, 
and they seem to be quite common. For example the fi rst 
pattern occurs for 11, 13, 17 and again for 41, 43, 47; later we 
fi nd 881, 883, 887. You might like to work out why the pattern 
of fi nal digits must always be 1, 3, 7. The second pattern 
occurs for 7, 11, 13, again for 37, 41, 43, and again for 877, 881,
883. This time the pattern of fi nal digits is 7, 1, 3.

Hardy and Littlewood thought about patterns of this kind 
for any number of primes, and they performed the same 
kind of probabilistic calculation that I’ve just described for 
the twin primes. They deduced a precise formula for the 
number of sequences of k primes with a specifi ed pattern of 
gaps, all less than some limit x. The formula is complicated 
to describe so I won’t give it here: see the article by Odlyzko 
and colleagues, and references therein.

The analysis that leads to the Jumping Champion conjec-
ture begins with the Hardy–Littlewood formula and extracts 
from it a formula for the number N(x,d) of gaps between 
consecutive primes of given size 2d, up to some limit x.
We use 2d because the gaps have to be even, except for the 
gap between 2 and 3. The formula is expected to be valid 
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only when 2d is large and x is much larger. Figure 12 shows a 
plot of log N(x,d) against 2d for x = 220, 222, . . ., 244. Each graph 
is approximately a straight line, but with bumps. A particu-
larly prominent bump occurs at 2d = 210, the conjectured 
next jumping champion after 6. (It would look more promin-
ent, but the logarithm fl attens it out.) This kind of informa-
tion suggests that the formula is not too wide of the mark.

Now, if 2d is going to be a jumping champion, the value of 
this formula has to be pretty big – at least half the number of 
primes less than x. The precise form of the formula (which 
again I won’t write down) shows that the best way to achieve 
this is if 2d has a lot of distinct prime factors. It also says that 
2d should be as small as possible subject to this condition, so 
the most plausible choices for 2d are the primorials. (The 
known jumping champion 4 is presumably an exception, 

fig 12 Plot of the logarithm of the number of occurrences of a gap 
of size 2d (vertical coordinate) against 2d (horizontal coordinate), 
for primes up to various limits x. These range from x = 220 (lower 
left) to x = 244 (upper right).
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occurring at sizes where the formula isn’t a good approxima-
tion anyway.)

The conjectured formula also lets us work out roughly 
when a given primorial takes over from the previous one as 
the new jumping champion. Suppose the two primorials are 
A = 2 ´ 3 ´ · · · ́ p, B = 2 ´ 3 ´ · · · ́ p ´ q, with p and q successive 
primes. Then the second takes over from the fi rst roughly 
when x = eA(q-1)(q-2), where e = 2.718. . . is the base of natural 
logarithms. This is where the expected values of x for 30 and 
210 to become jumping champions come from. Because of 
the exponential, these values of x rapidly become gigantic.

What is left to do here? Prove the Jumping Champions 
conjecture, of course – or disprove it, if it’s wrong. If you 
can’t do that, try something weaker: for example, prove that 
there exist infi nitely many distinct jumping champions. In 
1980 Paul Erdös and E.G. Straus proved just that, but only by 
assuming a quantitative version of the Hardy–Littlewood 
k-tuple conjecture. Unfortunately even the Twin Prime 
conjecture seems horrendously hard to prove, and the full 
Hardy–Littlewood k-tuple conjecture is almost certainly 
worse. More promising for recreational mathematicians is 
the search for other interesting properties of the gaps 
between primes. For example, what is the least common gap 
(that actually occurs) between consecutive primes less than 
a limit x? Which gap occurs closest to the average number of 
times – the most ordinary gap? As far as I know, these ques-
tions are wide open, even for relatively small values of x.
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ANSWER

Why do twin primes always have the same number of digits 

in decimal notation? It may seem obvious, but the proof 

reveals a potential loophole, which can occur in other number 

bases. Let the primes concerned be p and p + 2. In decimal 

notation, it is possible for p + 2 to have more digits than p.

However, this happens only when p = 999. . .98 or 999. . .99. 

In the first case p is even (and at least 8) so cannot be prime. 

In the second case p is a multiple of 9 so cannot be prime.

The final step in the proof uses special properties of the 

number 10. In other bases, things work out differently. In 

base-n notation, p must be of the form nk-2 or nk-1 for 

some power k. That is, nk must be either p + 2 or p + 1 for 

the smaller twin p of a twin prime. This can happen: for 

example, when p = 3 then nk can be 4 or 5. The twin primes 

3 and 5 (decimal) are 3 and 11 (base-4), which have different 

numbers of digits. In base 5, the same twin primes are 3 and 

10, again with different numbers of digits.

With more effort, we can take the analysis further. If nk = p

+ 2 then nk is prime, so k =1 and n is prime (equal to p + 2). If 

If nk = p + 1 then p = nk-1 = (n-1)(nk-1 + nk-2 + . . . + 1). Since p is 

prime, either k = 1 or n = 2. If k = 1 then n = p + 1 for the 

smaller twin p of a twin prime. If n = 2 and k > 1 then 2k-1 and 

2k + 1 must both be prime. The only case where this can occur 
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is 22-1 = 3 and 22 + 1 = 5. (If 2k-1 is prime – a so-called 

Mersenne prime – then it is well known and easy to prove that 

k must itself be prime. If 2k + 1 is prime – a so-called Fermat 

prime – then it is well known and easy to prove that k must 

be a power of 2. The only power of 2 that is prime is 2.)

In short: p and p + 2 are twin primes with different 

numbers of digits to base n if and only if n = p + 1 or p + 2 

where p is the smaller twin prime, or n = 2 and p = 3.

FEEDBACK

‘Jumping champions’ was almost my last column, so there 

wasn’t any feedback to speak of. So I’m going to cheat and 

tell you about a truly amazing discovery, one of the few 

cases where primes no longer baffle mathematicians. This is 

the Green–Tao theorem, proved in 2005 by Ben Green and 

Terence Tao. It is about patterns of primes similar to, but 

significantly different from, the p, p + 2, p + 6 example 

described a few pages back. The main result is easy to state:

for any integer k there exist infinitely many arithmetic 

progressions of primes with k terms.

An arithmetic progression is a sequence of numbers in 

which each exceeds the previous one by the same fixed 

amount. Symbolically, such a sequence looks like

a, a + d, a + 2d, a + 3d, . . ., a + (k-1)d

if it has k terms. Here d is the common difference and a is 

the first term. In the Green–Tao theorem, d is not specified 
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in advance, but is constructed during the course of the 

proof. For many years mathematicians – often amateurs – 

have sought long arithmetical progressions of primes. For 

three terms, there is the obvious progression 3, 5, 7, in which 

d = 2. An elegant seven-term progression is

7 157 307 457 607 757 907

with d = 150. But serious computer assistance is needed to 

find a 25-term progression, the longest one actually known 

(as of September 2008) is

6171,054,912,832,631 + 366,384 ´ 23 ´ d

for d = 0, 1, 2, . . ., 24. It was discovered by Jaroslaw 

Wroblewski and Raanan Chermoni in 2008. Green and Tao 

even provided an upper limit on how big the primes need to 

be, in terms of k. If we write a^b for ab, this limit is

2^2^2^2^2^2^2^2^100k.

In such expressions, the rule is to apply successive power 

operations ^ from the right working to the left. So first we 

raise 2 to the power 100k, then raise 2 to that power, and 

so on. The result is truly gigantic, and presumably a massive 

overestimate, but it’s all we know right now, and it’s aston-

ishing that Green and Tao managed to achieve that.

By the way, any arithmetical progression of primes must 

be finite – they can’t go on forever. But there is no specific 

limit that applies to them all.

It is relatively easy to extend the Green-Tao theorem to 

‘generalized arithmetical progressions’ in which the single 
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difference d is replaced by a finite list of differences, and all 

combinations are permitted. For instance, with two differ-

ences d
1
 and d

2
 we consider all numbers a + k

1
d

1
+ k

2
d

2
 with 

k
1
 and k

2
 running from 0 to some upper limit. In fact, all 

these numbers can be viewed as part of a longer arithmetic 

progression, and we just apply the Green–Tao theorem to 

that.

The theorem has innumerable consequences, and I 

mention just one: the existence of arbitrarily large magic 

squares composed entirely of primes (of course, these can’t 

be consecutive integers, and they aren’t even consecutive 

primes). Here’s a 4 ´ 4 example:

 37 83 97 41

 53 61 71 73

 89 67 59 43

 79 47 31 101

The theorem says you can do this kind of thing (though 

using gigantic primes) for, say, magic squares of size a 

million, or a billion – as big as you please. For further infor-

mation, see Andrew Granville’s article in Further Reading.
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Animals move in a variety of patterns, 

called gaits, and many of the patterns 

are symmetric. Now we are beginning to 

understand why. It all boils down to 

patterns in the networks of nerve cells 

that control animal motion. Jane and 

Tarzan explain.

5
Walking with 
 Quadrupeds



A centipede was happy quite,
Until a frog in fun
Said, ‘Pray, which leg comes after which?’
This raised her mind to such a pitch,
She lay distracted in a ditch
Considering how to run.

Mrs. Edmund Craster

T
ARZAN LEAPED INTO the air, kicked both legs out in 
front of him simultaneously, and sat down heavily on 
the ground. He had repeated this sequence of actions 
more than 20 times since Jane had started watching, 

and from the look on his face that was an underestimate.
It’s not that Tarzan doesn’t have a brain, Jane thought. He just 

needs training in using it. Indeed, she’d mapped out an ambi-
tious education for him, and Tarzan’s nose had been buried 
in books for weeks.

Maybe that was the problem. Jane grabbed a convenient 
vine and slid down.
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The ape-man looked up as she approached. ‘Uh, hi Jane.’
‘What was all that about?’
‘Uh – I was testing out Curie’s principle.’
‘Really? ’ It was a novel excuse.
‘Yes. And it doesn’t work.’
Jane gently took his hand and led him into the shade of a 

tree. ‘Let’s go somewhere cool and quiet, and you can tell me 
all about it.’

It took a while, but the gist was relatively simple. In one of 
the books that Jane had brought with her into the jungle for 
light reading, Tarzan had come across the statement that the 
human body possesses bilateral symmetry – it looks pretty 
much the same when refl ected in a mirror. Tarzan had never 
seen a mirror, but he had seen the surface of a still pond, and 
from the pictures in the book he’d puzzled that one out. In 
another book, he’d come across a fundamental principle 
proposed by the great physicist Pierre Curie: that symmetric 
causes produce equally symmetric effects.

‘So it seemed to me,’ Tarzan said, ‘that if I, a bilaterally 
symmetric ape – sorry, man, I keep forgetting – cause myself 
to walk, then Curie’s principle implies that my walk should 
also be bilaterally symmetric. Which means that both legs 
have to move forwards together. I’ve been trying it ever since, 
but I can’t seem to get anywhere. Except by sitting on my – ’

‘But,’ said Jane, ‘you’ve been doing it wrong. If you want a 
bilaterally symmetric gait, you should hop. Like this.’ She 
imitated a rabbit, hopping along with both feet together, 
hands held like paws. Tarzan watched the spectacle in fascin-
ation. Finally he plucked up enough courage to ask what a 
gait was.
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‘It’s a pattern of limb-movement, used for locomotion,’ 
said Jane. ‘Animals use all sorts of different gaits to get 
around. Walk, hop, gallop . . . Gazelles even pronk – they move 
all four legs together.’

‘Hopping is all very well,’ said Tarzan, ‘but all it shows is 
that a symmetric gait is possible. My reading of Curie’s prin-
ciple is that all human gaits – in fact, all gaits of all bilaterally 
symmetric animals – ought to be bilaterally symmetric.’ He 
paced thoughtfully up and down the clearing, stopping occa-
sionally to beat his fi sts against his chest in frustration. ‘But 
most of them aren’t.’

Bilaterally symmetric . . . The same as its refl ection in a mirror,
thought Jane. She tried to imagine what Tarzan’s walk would 
look like in a mirror (Figure 13). It would look like a walk. But 
not quite the same walk.

‘It almost is,’ she said. ‘When you refl ect a walking gait, it 
still looks like a walking gait.’ She paused thoughtfully. ‘It 
has to, really, otherwise people walking would look funny in 
a mirror. Though I suppose that’s not conclusive, because 
letters of the alphabet do look funny in a mirror. Hmmm.’

L R L R L R L R L R

R L R L R L R L R L

fig 13 In the human walk, left and right feet hit the ground in turn. 
Refl ection in a mirror (grey line) appears to swap left and right feet, 
which is equivalent to a time delay of half a period.
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‘The difference,’ said Tarzan, ‘is that when I put my right
foot forward, my mirror-image puts its left foot – well, what 
appears to me to be its left foot, I don’t know what its opinion 
is – forward. Now, on my next step, I do put my left foot 
forward, but by then my mirror-image is putting its right 
foot forward. We’re always out of step with each other.’

There were times when Tarzan seemed quite bright. ‘Out 
of phase, not step,’ said Jane in excitement. ‘That’s why 
everything looks all right in a mirror. If you delay time by 
the amount required to take one step, then the relative 
positions of the legs (though not their positions on the 
ground) for the mirror walk looks exactly the same as they 
do in the original.’

‘Phase?’
‘Walking – like all gaits – is a periodic motion. It repeats at 

regular intervals of time. If you have two copies of the same 
periodic motion, but one is time-delayed relative to the other, 
then the fraction of the period representing the delay is called 
the relative phase. Your left leg is out of phase with your right 
leg by exactly half a period, that is, a relative phase of 0.5.

‘Which is very interesting,’ she continued, ‘because it 
shows that gaits have symmetries in time as well as in space. 
After all, a symmetry is just a transformation that leaves the 
system looking the same afterwards as it was before. Peri-
odicity itself is a time symmetry: shift time by one period, 
and everything looks the same. ‘Refl ect left/right and shift 
phase by 0.5’ is a mixed spatio-temporal symmetry of the 
human walk. Isn’t that grand?’

‘What was the relative phase when you were hopping? 
Was it 0? ’ asked Tarzan tentatively.
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‘Exactly. The two legs moved together, so there was no 
difference in phase. The same goes for a kangaroo when it 
hops’ (Figure 14).

‘What’s a kangaroo?’
‘Oh, sorry – there aren’t any in Africa, they live in Australia. 

They hop around on two legs.’
The ape-man leaped to his feet, performed a curious war-

dance, and crashed to the ground. ‘I was trying to get a rela-
tive phase of 0.3,’ he explained.

‘I’m not sure you can,’ said Jane.
‘Of course I can! All I have to do is make my left foot lag 

behind my right by 0.3 of a period!’
‘True.’
‘But that seems hard.’
‘Maybe it’s because it isn’t a true symmetry,’ said Jane. ‘You 

see, if everything looks the same after swapping left and right 
and shifting phase by 0.3, then not only must your left leg be 
0.3 out of phase with your right, but your right must also be 
0.3 out of phase with your left. So the right leg is 0.3 + 0.3 =
0.6 out of phase with itself, which is silly.’

‘Dangerous, too,’ said Tarzan, ruefully rubbing his legs.

fig 14 Eight snapshots of the bound of a kangaroo. The animal’s 
bilateral symmetry is maintained at all times.
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‘Hey! There’s a theorem in all this! ’ Jane yelled. Fans of 
Edgar Rice Burroughs will recall that Jane’s father was 
Professor Archimedes Q. Porter, so it is unsurprising that his 
daughter should have inherited some of the family’s math-
ematical ability. ‘If left–right refl ection combines with a 
phase shift to give a symmetry,’ Jane went on, ‘then the phase 
shift must be either 0 or 0.5. Nothing else is possible.’

‘Why?’
‘Because the same argument applies. If each leg is delayed 

relative to the other by some phase, then each leg is delayed 
relative to itself by twice that phase. Now, it’s possible for a 
leg to be delayed relative to itself – but only by an integer 
multiple of the period, because that’s effectively the same as 
no delay at all. So twice the phase shift is 0, 1, 2, 3, and so on; 
which implies that the phase shift is 0, 0.5, 1, 1.5, and so on. 
But 1 has the same effect as 0, and 1.5 the same effect as 0.5,
because of periodicity.

‘Which means,’ she continued, ‘that the gaits of two-legged 
animals can have only those two symmetries. Apart from no 
symmetry at all. I wonder if that can actually – ’ Tarzan 
limped towards her, dragging one leg. ‘That’s it, exactly! You 
do catch on quickly, Tarzan.’

He squatted next to her, rummaging through the hair on his 
chest in search of little bits of salt until Jane slapped his wrist. 
‘Four-legged animals must be more complicated,’ he said.

‘True. There are lots of quadruped gaits.’ Figure 15 shows 
the eight most common. The bound has left–right symmetry, 
like the two-legged hop. The pace, common in giraffes (Figure 
16) and camels, is like the human walk: it changes phase by 
half the period if left and right are swapped.



60 | CHAPTER 5

0

0.25 0.75

0.5 0

0.5 0

0.5 0

0 0.5

0.5 0

0.5 0.5

0

0

0.5 0.6

0.1 0

0.6 0.5

0.1 0

0.2 0

0.7 0

0 0

0

TROT PACEWALK BOUND

ROTARY
GALLOP

TRANSVERSE
    GALLOP

CANTER PRONK

fig 15 Eight common quadruped gaits, showing the relative phases 
of the legs.

fig 16 The walk of a giraffe, which breaks bilateral symmetry. The 
second four frames are the same as the fi rst four, but refl ected 
left–right (with respect to the giraffe, not the page).
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‘What I don’t understand,’ Tarzan mused, ‘is why Curie’s 
principle doesn’t work. Why are gaits less symmetric than 
the whole animal? ’ At that moment, Heftilump the elephant 
ambled through the glade, trumpeting his pleasure at seeing 
Tarzan. Tarzan trumpeted back. ‘Mind you,’ he continued, ‘I 
don’t think a pronking elephant bears contemplation. 
Survival of the fl attest . . . it would never have evolved.’

‘Symmetry-breaking,’ said Jane. ‘That’s why Curie’s prin-
ciple fails.’

‘What’s symmetry-breaking?’
‘It happens when a symmetric system behaves in a less 

symmetric way.’
‘Oh. You mean, it’s what happens when Curie’s principle 

fails.’
‘Precisely!’
‘So . . . Curie’s principle fails whenever Curie’s principle 

fails. Great. That really clarifi es the issue, Jane.’
Jane growled like an angry lioness. Damn! Now he’s got me 

doing it! ‘The important point to understand, Tarzan, is that 
Curie’s principle can fail. Let me show you how. Where’s 
Jim?’

Young Jim Pansy was always hanging around near the 
hut – usually in it, stealing bananas – and Jane collared the 
beast with ease. She tied a knot in the end of a vine, and sat 
the young ape on it, where it clung, chittering excitedly until 
she stuffed a banana in its mouth to shut it up.

‘When Jim sits still and the vine hangs vertically down-
wards,’ said Jane didactically, ‘the entire system has circular 
symmetry.’ Tarzan looked baffl ed. ‘I mean, if you walk round 
it, it looks pretty much the same from all directions.’ Tarzan 
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inspected Jim’s face, then walked round to the far side. He 
looked more baffl ed than ever. ‘You have to pretend Jim is a 
featureless spherical lump, Tarzan.’ He nodded happily.

‘Now, suppose I grab the vine where it’s draped over this 
branch, and pull it up and down gently like this . . . Then Jim 
bobs up and down, but he doesn’t move sideways. The impor-
tant part of the system, the bit of vine hanging from the 
branch with Jim attached, is still circularly symmetric, even 
though it bobs up and down; but look what happens.’ As 
Jane pumped the vine more energetically, Jim began to swing 
in an arc, short at fi rst, then longer and longer. The chimp 
squealed in delight, waved its arms, and fell off, terminating 
the experiment.

‘I saw it,’ said Tarzan, ‘but I’m not sure what I saw.’
‘Symmetry-breaking,’ said Jane. ‘The perfectly symmetric 

state of the system is to hang vertically. But, when I pump it, 
that state becomes unstable. It still exists, mathematically, but 
you don’t observe it in practice because any tiny random 
deviation tends to grow. Since the symmetric state can’t 
occur, then naturally the system has to do something else, 
which perforce has to be less symmetric.’

‘Ah.’ He paused. ‘What does “perforce” mean?’
Jane ignored him. ‘However, it’s not totally asymmetric. 

Jim was swinging to and fro in a plane. If you think of that 
plane as a mirror, then his swing is symmetric under refl ec-
tion in that mirror. That’s an example of a standing wave.

‘But that’s not all.’ She picked Jim up, stuffed another 
banana into his mouth to mollify him, and attached him to 
the vine again. ‘There’s another type of periodic oscillation 
that Jim can perform, too.’ She gave the ape a shove, and he 
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swung in circles. ‘Now, you might think that this motion has 
circular symmetry, but that’s not true. If you rotate the 
system through some angle, then it doesn’t look exactly the 
same.’

‘No, it’s like the walk in a mirror. It’s the same general kind 
of motion, but in a different place at a given time.’

‘Right. What does that mean?’
‘Much the same, but the timing’s wrong . . . of course. It’s a 

phase shift again.’
‘You’ve got it. If you rotate the system, and apply a suitable 

time delay, it looks exactly the same as before. And in this case 
the time delay is the same as the rotation, in the sense that a 
rotation of 0.4 of a turn needs a time delay of 0.4 of a period, 
and so on. That’s called a rotating wave.’

‘Let me run this up an acacia tree and see who gets 
scratched,’ said Tarzan. Jane began to wish she hadn’t included 
a book about business in her travelling library. ‘When the 
perfectly symmetric state becomes unstable, the symmetry 
can break either to a standing wave, or a rotating wave. The 
standing wave has a purely spatial symmetry – refl ection in 
its plane. The rotating wave has a mixed spatio-temporal 
symmetry.’

‘That’s it, exactly!’ Tarzan beat his chest and howled in 
triumph, while Jane shook her head. It wouldn’t go down 
well in the House of Commons; the ape-man’s education still 
had some way to go. ‘However, the circular symmetry hasn’t 
totally vanished.’ She grabbed the vine. Jim looked worried. 
‘Choose a vertical plane.’

‘In line with that monkey-puzzle tree,’ said Tarzan. Jane 
gave Jim a push in that direction; the ape oscillated to and fro 
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in the plane that Tarzan had chosen. ‘Which planes will that 
work for? ’

‘Any of them, I guess,’ said the ape-man. ‘Provided they’re 
vertical and run through the point where the vine runs over 
the branch.’

‘Right. Planes through the symmetry-axis. And how are 
those planes related?’

‘Hmmm . . . They’re all rotations of each other. I see! Instead 
of having a single state of the system, unchanged by all rota-
tions – that is, a fully symmetric state – you get lots of less 
symmetric states, all related to each other by rotations.’

‘Exactly. The whole set of motions still has circular 
symmetry, in the sense that if you rotate any motion, you get 
another one in that set. But it may not be the one you started 
with. The symmetry isn’t so much broken as shared.’

At that moment a spotted orange shape shot across the 
clearing, yowling, collided with Tarzan, and they fell in a 
struggling heap. There was a brief scuffl e, from which the 
ape-man emerged wearing a broad smile, and cradling a 
large cheetah. ‘Look, Spot’s come to visit! ’

‘Yes, and using what I judge to have been a transverse 
gallop,’ said Jane, ‘which is one of the least symmetric gaits’ 
(Figure 17).

fig 17 The transverse gallop of a cheetah.
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‘What symmetry does it have?’ asked Tarzan.
‘You can read it off from the phase shifts,’ said Jane (see 

Figure 15). ‘In the transverse gallop, diagonally opposite legs 
are 0.5 out of phase. There’s also a curious phase lag of about 
0.1 between the front left and front right legs, which I’m not 
going to explain because then it will get really technical. It’s 
probably related to the effi cient use of energy by the animal. 
Anyway, the symmetry is this: interchange diagonal pairs of legs 
and shift phase by half a period.’

‘I wonder what kind of symmetry-breaking could create 
that kind of motion?’ said Tarzan. But the Sun was setting. 
They retired to their hut.

Next morning, Jane was awoken by a tremendous 
screeching and chattering, like a pack of monkeys. When she 
looked down into the clearing, that’s pretty much what she 
saw. Tarzan had rigged up a complicated network of vines 
between four trees (Figure 18) and was trying to use bananas 

fig 18 Tarzan’s Central Pattern Generator simulation.
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to bribe some young chimps to cling to the ends of four 
hanging vines. Apes, not monkeys. Same difference.

‘It’s a model of what the biologists call a Central Pattern 
Generator,’ said Tarzan happily. ‘I’ve been doing some more 
reading. Each chimp represents a component of the animal’s 
neural circuitry, controlling a leg. The vines are interconnec-
tions that couple the neurons together, so that they affect 
each other. The dynamics of the circuit controls the rhythms 
of the gait. Look!’ He gave one chimp a shove and it began to 
swing; the impulses transmitted along the linking vines 
soon set the other chimps swinging in sympathy. A rather 
complex pattern was just setting in when one chimp jumped 
off to steal another’s banana.

‘Just a hardware problem,’ said the ape-man, picking up 
the miscreant and replacing him on his vine. ‘The basic 
concept is OK. Each network permits a whole range of oscil-
lations. That’s why a single animal can employ several 
different gaits, depending on speed, terrain, and so on. I can 
get most of the standard gaits using a square arrangement. 
Oddly enough, the one that I can’t seem to get is the walk. 
That’s a kind of fi gure-8 rotating wave, in which the front 
left, back right, front right, back left legs move in sequence, 
with 0.25 phase lags. But I can get that if I rearrange the vines 
to make two of the side-connections cross.’

‘Let me see if I understand what you’re suggesting,’ said 
Jane. ‘You’re looking at various networks of coupled oscilla-
tors, and fi nding out what kinds of symmetry-breaking can 
occur. Then you’re trying to match the results up with actual 
gaits, on the assumption that each leg is controlled by one 
oscillator.’
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‘Well, of course. I mean, anyone could see that. Though 
each “oscillator” could be a complicated circuit in practice. 
The point is, it works! Look, suppose you want a bound. 
Then you set the front two “legs” moving together, and at the 
same time’ – he rushed to the other end of the clearing – ‘you 
set the other two legs going together, but 0.5 out of phase. Of 
course, you can start the chimps swinging in any pattern you 
like; but only a few patterns persist for very long. The rest get 
all muddled up. So I fi gure those are the natural oscillation 
patterns of the network. It’s just as easy to get the trot, the 
pace, and the pronk.

‘The two types of gallop aren’t so much harder, but I’m 
having real trouble persuading these chimps to canter, I can tell 
you! Probably just need more bananas to iron out the bugs.’

‘Tarzan, aside from the appalling mixed metaphors, that’s 
really rather impressive – ’ Jane began, but the ape-man had 
dived into the bushes, shouting. ‘Bugs! Bugs! It ought to work 
for bugs too!’ He reappeared waving a large green beetle, and 
placed it on a rock. After a hesitant start, the insect scuttled off.

‘Tripod gait,’ said Jane. ‘Legs go together in threes, one 
triple being 0.5 out of phase with the other (Figure 19). Front 
and back one side, middle on the other. Nice symmetries.’

fig 19 Tripod gait of an insect.
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By late afternoon Tarzan had rigged up a set of six vines 
linked in a hexagon, and six puzzled chimps were swinging 
happily in a tripod gait. Alternate chimps swung inwards 
and outwards, 0.5 out of phase.

As she dropped off to sleep that night, Jane found herself 
thinking I hope Tarzan doesn’t start wondering about . . . but she 
fell asleep before she could complete the thought.

Just after sunrise, she was awoken by the sound of huge 
trees crashing to the ground, against a background of the 
most appalling screeching she’d ever heard. Tarzan was 
extending the clearing to make a long track. A huge pile of 
vines lay along both sides, a heap of bananas as large as their 
hut at one end, and chimpanzees were charging around 
everywhere. She tried to count them. There must have been 
at least a hundred.

Exactly a hundred, of course. Her thought of the previous 
evening completed itself. I hope Tarzan doesn’t start wondering 
about centipedes. Not that centipedes actually have a hundred 
legs, but then, Tarzan was very literal-minded.

A new thought occurred to Jane. Oh my God. I just hope 
nothing reminds him about millipedes.
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Square tiles, rectangular tiles, hexagonal 

tiles, curved tiles – mathematicians have 

been charmed by their patterns, startled 

by their versatility, and baffled by 

apparently simple questions that turn 

out to be amazingly hard. But have you 

ever thought about knotted tiles?

6
Tiling Space with Knots



S
HAPES THAT TILE the plane – fi lling it completely 
without overlapping – are a recurring theme in both 
recreational and mainstream mathematics. Solids 
that ‘tile’ three-dimensional space have also attracted 

a lot of attention. In fact, so many people have worked on these 
questions that it would be easy to imagine that nothing new 
remains to be done. That this is defi nitely not so was brought 
home to me by a beautiful article in the Mathematical Intelligencer
by Colin C. Adams (Williams College). Adams has discovered 
general methods for creating three-dimensional tiles with 
highly intricate topology; in particular they can be knots.

All of Adams’s three-dimensional tilings are constructed 
from congruent copies of one single shape, called the prototile.
The simplest three-dimensional tiling uses a cube as a 
prototile, stacking the cubes like a three-dimensional chequ-
erboard. This ‘cubic lattice’ tiling might seem prosaic, but 
simple modifi cations can create tiles with a surprisingly 
complex topology, as we’ll see.

Topology is ‘rubber sheet geometry’, the geometry of con-
tinuous transformations; that is, it studies those  properties 
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of shapes that remain unchanged when the shape is stretched, 
squashed, bent, twisted, or generally deformed in a continu-
ous manner (no tearing or cutting). Such a deformation is 
called a topological equivalence: for example a cube is topo-
logically equivalent to a sphere – just round off the corners. 
Topological properties include fundamental concepts such 
as connectedness and knottedness.

A favourite shape for topologists is the torus, shaped like a 
doughnut or an automobile tyre. For the purposes of this 
article I’m thinking of a solid torus – the dough of the 
doughnut and not just the sugary surface. To get your mind 
moving along topological lines, you should begin by 
inventing a prototile that is topologically equivalent to a 
torus. Think about it before reading on. Figure 20a shows 
one possible solution. The prototile is a cube with a square 
hole bored through the middle. Two ‘lugs’, with the same 
cross-section as the hole, are placed at the middle of opposite 
faces; each lug is half the length of the hole.

(b)(a)

fig 20 (a) Toroidal tile formed by boring a hole through a cube and 
adding matching lugs. (b) An alternative way to make a toroidal 
tile.
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Topologically, this prototile is just a solid torus: if you 
made it from modelling clay you could squash the lugs fl at 
and then round off the corners to get the traditional doughnut. 
You can build a fl at slab one cube thick from copies of this 
prototile by placing them like the squares of a chessboard, 
with those corresponding to a black square oriented at right 
angles to those corresponding to a white square, so that the 
lugs fi t neatly into – and fi ll – the holes. Then you just stack a 
pile of slabs on top of each other.

With this prototile you could make real tiles from wood 
and actually fi t them together one by one: they tile space but 
do not interlock. An alternative, shown in Figure 20b, 
involves prototiles that interlock. From now on we’ll allow 
prototiles to interlock: we’re looking for mathematical 
patterns that tile space, but we’re not worried about how to 
assemble them from separate tiles.

Both solutions illustrate the ‘pick-and-mix’ principle, 
which can be seen most clearly in the plane (Figure 21). Start 
with a simple tiling – here squares. Subdivide each tile into 
several pieces, using the same subdivision in each tile. Now 
assemble a new prototile by choosing one copy of each 
piece – but not necessarily from the original square. The 
result automatically tiles the plane. Similar constructions 
apply to three-dimensional space. As a variation, the original 
simple tiling may involve placing the prototile in different 
orientations in some regular manner. The tilings described 
in the fi gure can be viewed as applications of the pick-
and-mix principle to the tiling of space by a cubic lattice. For 
Figure 20a the basic cube is divided into three pieces: a cube 
with a tunnel, and two lugs that split the tunnel into equal 
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halves. For Figure 20b it is divided into a cube with a square 
groove, and a rectangular box that fi lls the groove. If these 
cubes are stacked in a lattice with suitable orientations, and 
the appropriate pieces are then reassigned to neighbouring 
cubes, you get the tilings just described.

The ‘lug-and-hole’ construction can easily be modifi ed so 
that the torus has more than one hole: bore several parallel 
holes in a neat row, with matching pairs of lugs, each half as 
long. Indeed the same basic idea leads to tiles with more 
exotic topology, known as ‘cubes with holes’. To obtain a 
cube-with-holes start with a solid cube, and bore several 
tunnels through it, always starting at the top face and ending 
at the bottom face. These tunnels can wind round each other, 

fig 21 Pick-and-mix principle, here illustrated for a tiling of the 
plane by squares. Subdivide each square into several pieces; then 
create a prototile that uses one copy of each piece but taken from 
more than one component square.
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form knotted loops, and generally intertwine in topologically 
intricate ways. Any cube-with-holes can be modifi ed to create 
a topologically equivalent prototile. Simply split each tunnel 
in two, and add lugs to the left and right faces of the cube to 
correspond to the appropriate half-tunnels. These prototiles 
fi t together in exactly the same way as those in Figure 20a: 
again we are applying the pick-and-mix principle.

Moreover, the addition of the lugs does not change the 
topology of the original cube-with-holes, because you can 
imagine each lug growing continuously outwards from the 
face to which it is attached. Call this the ‘sprouting prin-
ciple’ – a shape retains the same topology if it sprouts extra 
protuberances. There is one important restriction: the protu-
berances must not themselves develop holes, because this is 
not a continuous transformation. To be precise, the protu-
berances must be topologically equivalent to a cube, and 
they must be attached at only one face of that cube. (To a 
topologist, a long thin wiggly tube attached at one end is 
equivalent to a cube attached at one face.)

This is quite a general idea, but many interesting topologic-
al shapes are not equivalent to a cube-with-holes. In order to 
deal with them, Adams introduces another, much cleverer 
technique. I’ll illustrate this using a solid torus tied in a simple 
overhand (or trefoil) knot; a very similar method works with 
any knot whatsoever. The basic idea is to think about how 
you might cast a trefoil knot in bronze using a mould whose 
pieces fi t together to make a cube. Then you apply the pick-
and-mix principle. In order to retain the topology of the 
knot, it turns out that the pieces of the mould must be topo-
logical cubes.
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Figure 22a shows just such a mould. Two of the pieces are 
half-cubes with indentations along one face, and the third is 
a strange tree-like structure. The role of the tree is to join 
overlapping regions of the knot together to convert it into a 
many-holed torus. It is formed from three squarish patches, 
which glue up the overlaps, and these are piped together by 
thin tubes – so that only one extra piece is needed instead of 
three, and that piece is topologically equivalent to a cube. 
The top and bottom pieces of the mould fi t together to form 
a normal square-sided cube, except for a region that corres-
ponds precisely to the knot plus the tree. The stem of the tree 
extends to the edge of the overall cube.

(a) (b)

fig 22 (a) Casting a trefoil knot using a three-part mould that fi ts 
together to make a cube. (b) A prototile formed from this by applying 
the pick-and-mix principle. Despite its complicated appearance, the 
sprouting principle implies that it is topologically equivalent to the 
trefoil knot.
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Why introduce the extra complexity of the tree? The 
reason is that you cannot cast a trefoil knot from a mould 
with only two pieces, if those pieces are to be topologically 
equivalent to cubes. The tree converts the knot into a shape 
that can be cast in this manner.

Having constructed the three-part mould, you now use 
the pick-and-mix principle to create the prototile shown in 
Figure 22b. Begin with a cubic lattice whose cubes are split 
into four pieces: a trefoil knot plus its three-piece mould, as 
just described. Imagine space fi lled with such cubes, arranged 
in a cubic lattice. Then choose one copy of each piece as 
shown in Figure 22b: the knot from one cube, the top half-
cube from the one behind it, the bottom half-cube from the 
one in front of it, and the tree from the one to its left. You 
must also cut a few grooves and add matching tubes with 
semicircular cross-sections, as shown, so that the pieces fi t 
together into a single – rather elaborate – prototile. Despite 
its curious spindly architecture, this prototile is topologic-
ally equivalent to the original trefoil knot. This follows from 
the sprouting principle, because the prototile is formed by 
adding three protuberances to the trefoil knot, and despite 
their complex shapes, those protuberances are topologically 
equivalent to cubes.

This method, though topologically elegant, leads to rather 
complex shapes, and you could be forgiven for wanting 
shapes more like an ordinary knotted tube. Adams has an 
answer to that too: he starts with a cube and cuts it into 
congruent knotted pieces. Figure 23 illustrates such a decom-
position into four symmetrically related trefoil knots. If you 
start with a cubic lattice, and break each cube into four trefoil 
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knots in the manner shown, then you have tiled space with 
trefoil knots.

There are many unsolved problems about knotted tiles: 
here’s one that’s suitable for recreational mathematicians. 
Suppose you start with a cube and subdivide it into n3 smaller 
cubes, each 1/n the size, in the obvious way. Now colour 
those sub-cubes with four colours so that the sub-cubes of a 
given colour form a shape topologically equivalent to a trefoil 
knot. Do this so that the four knots are symmetrically related 

fig 23 Successive slices through a cube composed of four symmetric-
ally placed trefoil knots. To form the knots, stack the slices on top of 
each other and glue adjacent regions with the same colour together.
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by right-angle rotations, just as they are in Figure 23. The 
question is: what is the smallest value of n for which this can 
be done?

By covering each square in Figure 23 by a suitably fi ne grid 
you can convince yourself that a large enough value of n
works – I leave you the pleasure of fi nding the precise value. 
The unsolved problem is whether there exist similar diagrams 
based upon a smaller grid. Note that n must be even if the 
four knots are to be symmetrically related, and it is fairly 
easy to rule out small values of n. You might also care to 
investigate whether the minimal value for n can be reduced 
by omitting the symmetry condition.

FEEDBACK

Michael Harman, a chartered patent agent living in Camberley 

in the UK, sent me a long letter describing several novel 

approaches to finding knotted tiles. An especially inter-

esting idea is to start with a ‘torus knot’, formed by winding 

a length of string around a solid torus (Figure 24). Several 

congruent copies of such a string tile the surface of the 

torus, and this tiling can be extended to fill the interior, with 

the tiles remaining congruent.

It is well known that a cube can be dissected into two 

congruent tori (plural of ‘torus’). Harman observes that each 
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of these can be dissected into two congruent knots, so we 

obtain a new dissection of a cube into four congruent knots. 

He adds ‘it is also worth noting that the dissections of the 

two tori can be either directly matching or mirror-images of 

each other.’
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Time travel has been a theme in science 

fiction ever since H.G. Wells wrote The 

Time Machine , just over a century ago. 

For the last few decades it has also been 

a theme in relativistic physics. Despite 

the many paradoxes, the laws of physics 

as currently understood do not seem 

to rule out travelling through time. 

Welcome to Hawkrose & Penking 

Heavy Engineering.

7
Forward to the Future 1: 

Trapped in Time!



I
WAS JUST finishing my shift at Hawkrose & Penking 
Heavy Engineering when I heard a faint whining noise. It 
seemed to be coming from the virtual reality simulation 
area. The place gets pretty dead late in the evening, and I 

was the only person around. I had little choice but to fi nd out 
what it was, but I was nervous, I can tell you. It could have been 
a cyberspatial break-in. Physical security is unbeatable in the 
year 3001 – we have DNA-sensitive robot guards, for example – 
but electronic security is another thing altogether. There are 
just too many smart crooks with electronics training.

The room was full of acrid smoke. It had to be a physical 
break-in, which was impossible. I started to sweat. The smoke 
began to clear.

There was a strange contraption in the middle of the room, 
a delicate framework of shiny metal, glass, and what appeared 
to be off-white plastic. It had an old-fashioned look. A man 
was sitting in the middle of it, hidden inside a black cloak. He 
moved.

‘Security! ’ I shouted. ‘This room is sealed. Come out with 
your hands raised. Do not touch any lasers, phasers, 
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 rocket-launchers, or other weaponry, or you will be instantly 
annihilated by our biocybernetic defence systems.’ I was 
bluffi ng, but maybe he wouldn’t know that. He climbed out. 
‘Identifi cation?’ I asked.

‘Uh – you wish to be apprised of my name, sir? ’
He sounded polite, and very old-fashioned. What was he 

trying to pull? ‘Identify yourself immediately,’ I said.
‘You may call me the Time Traveller. I am a friend of Mr. 

Herbert Wells.’
Herbert – wait, did he mean Herbert George Wells? H.G. 

Wells, the famous science fi ction writer? ‘Yeah, and singu-
larities grow on trees.’ I spread him out against a wall and 
searched him. I found some very strange items, including a 
quill pen. I looked closely at the machine. It was made of 
steel, tin, glass, and crystal, with beautifully engineered brass 
fi ttings. Some parts were made of a white plastic material, 
which I couldn’t place.

I knew his story made no sense – but somehow it sounded 
convincing. There was a kind of ancient feel to the equipment, 
a genuine antique. You can’t fool me when it comes to 
 engineering.

‘Suppose that on a whim I pretend to believe you,’ I said. 
‘How did you get here and why?’

‘I had no choice. I was on my way to the distant future 
when I smelt smoke. I turned off the machine, but too late. 
The temporal selection gear has stripped its teeth.’ He fi ddled 
inside the machine for a moment and pulled out a very sad-
looking disc of the plastic stuff, a wisp of smoke still rising 
from it. ‘Perhaps you could be so kind as to make me a new 
one?’
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‘That depends,’ I said. ‘On what sort of plastic you 
need.’

‘Excuse me, good sir, but what is ‘plastic’? ’
He was either a very good actor or he was telling the truth. 

He didn’t know what plastic was. I said ‘White stuff, like 
that.’

‘Oh, this? This is elephant ivory. It is the only material fi t 
for the purpose, something to do with its animal origins. But 
it must still be very common.’

At that moment I became convinced. Nobody in 3001 could 
get hold of ivory. For one thing, trade in the stuff had been 
prohibited for a thousand years. For another, the last elephant 
had been slaughtered by poachers nine hundred and fi fty 
years ago. What ivory remained was in museums, priceless, 
and had aged to a dull yellow.

This stuff was fresh.
‘Not a hope,’ I said, explaining why I couldn’t get the mater-

ials needed to make a new gearwheel.
The Time Traveller looked close to tears. ‘Then I am 

trapped,’ he whispered.
‘Maybe, maybe not,’ I said. ‘If there’s a way, Hawkrose & 

Penking will fi nd it. Now, tell me how this contraption works, 
and I’ll see what we can come up with.’

He made a visible effort and pulled himself together. ‘You 
may recall that in the 1894–5 issue of The New Review my 
friend Mr. Wells published a story called “The Time 
Machine”.’

As it happened, I did: my hobby is ancient literary history. 
I’ve always felt it was fi tting that the magazine couldn’t decide 
which year to be published in.
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‘The tale was inspired by a true invention,’ the Time Trav-
eller continued, when I nodded. Mr. Wells himself explained 
the main idea when he wrote that “There is no difference 
between Time and any other of the three dimensions of 
Space except that our consciousness moves along it.” This 
machine moves in a different direction from our conscious-
ness, that’s all. When it works.’

‘Interesting,’ I said. ‘Not entirely true, but interesting.’
‘Not entirely true?’ So I had to explain to him some basic 

relativity, the kind kids get in the gestation-tanks before 
being decanted. Starting with Special Relativity.

‘The main thing to remember,’ I said, ‘is that “relativity” is 
a silly name.’

‘Then why do you employ it? ’
‘Historical accident. We’re stuck with it. Unless you can 

get your machine working, go back, and persuade old Albert 
to invent a better one.’

I explained that the whole point of Special Relativity is not
that ‘everything is relative’, but that one particular thing – 
the speed of light – is unexpectedly absolute. If you’re travel-
ling in a car at 50 kph (kilometres per hour) and you fi re a 
gun forwards, so that the bullet moves at 500 kph relative to 
the car, then it will hit a stationary target at a speed of 550 kph, 
adding the two components (Figure 25a). However, if instead 
of fi ring the gun you switch on a torch, which ‘fi res’ light at 
a speed of 1,079,252,848 kph, then that light will not hit 
the stationary target at a speed of 1,079,252,898 kph (note the 
fi nal 98, not 48). It will hit it at 1,079,252,848 kph, exactly the 
same speed that it would have had if the car had been 
stationary (Figure 25b).
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‘You can prove this for yourself,’ I told him. ‘You need a 
shoebox, a torch, and a mirror.’

‘Torch?’
‘Oh, heck – use a lantern. Cut a small hole in the front of 

the box, to let the light in. Cut a fl ap in the top so that you can 
open the box and look inside; and write ‘THE SPEED OF 
LIGHT IS 1,079,252,849 KPH’ on the bottom of the inside of 
the box. Stand still, close the fl ap, aim the lantern at the 
mirror so that the beam refl ects back into the box through 
the hole, and open the fl ap to read off the speed of light. Then 
run towards the mirror and repeat the experiment. Funny, you 
get 1,079,252,849 kph both times . . . ’

‘That,’ said the Time Traveller haughtily, ‘is an extraordin-
arily silly experiment.’

‘True. But with more sophisticated equipment you get the 
same answer – as Albert Michelson and Edward Morley 
discovered between 1881 and 1894. They were trying to 
detect the motion of the Earth relative to the “ether”, the all-
pervading fl uid that was thought to transmit all electromag-
netic radiation, light included. If Newtonian physics were 
correct, that motion would show up as a difference in the 

500 kph

550 kph

50 kph

1,079,252,848 kph
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1,079,252,848 kph
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fig 25 (a) In Newtonian mechanics, relative velocities combine by 
addition. (b) In relativistic mechanics, the speed of light is constant.
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apparent speed of light when the Earth was at opposite 
points of its orbit, moving in opposite directions. But they 
couldn’t fi nd any difference in the speed at all, even with 
very sensitive equipment.’

‘Yes, I know about their work. It seemed to me that all it 
proved was that the Earth must carry the ether along with it 
when it moves in orbit.’

That had never occurred to me, though doubtless others 
had thought of it at the time, and presumably it had been 
dismissed for good reason. I improvised. ‘It’s a cute theory.’

‘Cute?’
‘Uh – clever. But you’d expect to see funny effects in the 

light from distant stars if the ether was swirling around like 
that. Michelson and Morley came to the conclusion that 
either there isn’t an ether at all, or the Earth isn’t moving rela-
tive to it – which is not very credible – or that there’s some-
thing pretty weird about light.’

‘And which of those alternatives it true?’
‘Well, a physicist called Albert Einstein is generally cred-

ited with the theory – called Special Relativity, like I said – 
that there’s something pretty weird about light. He published 
it in 1905. But a lot of other people – among them Hendrik 
Lorentz and Henri Poincaré – were working on the same 
idea, because it was widely recognized that Maxwell’s equa-
tions for electromagnetism didn’t entirely fi t with Newton-
ian mechanics. The problem was one of “moving frames of 
reference”. How do the equations change when the observer 
is moving? There are formulas that answer this question. In 
Newtonian mechanics, for example, velocities measured by 
(or relative to) a moving observer change by subtracting the 
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motion of the observer. But Newtonian transformations 
can mess up Maxwell’s equations. The answer is to use 
different formulas, called Lorentz transformations. They 
keep the speed of light constant, but have spin-off effects on 
space, time, and mass. Objects shrink as they approach the 
speed of light, time slows down to a crawl, and mass becomes 
infi nite.’

‘It is diffi cult to credit such a strange tale.’
‘You arrive in the middle of this building in what you claim 

is a time machine, and you say I’m telling an incredible 
story?’

‘Well, when I started out, this building did not exist. In any 
case, sir, I am here.’

‘Yes. And so is Special Relativity. Now, I admit it’s not easy 
to think about this kind of thing using just the formulas, and 
the idea didn’t really take off until 1908 when the mathemat-
ician Hermann Minkowski provided a good geometric model 
for relativity – a simple way to visualize it – now called 
Minkowski (or fl at) space-time.

‘Precisely because relativity is about the non-relative behav-
iour of light, everything in it depends heavily upon which 
“frame of reference” is used by an observer. Moving and static 
observers see the same events in different ways.’

‘That I understand. The time machine works on just such 
a principle.’

‘Yeah, right. But you’re thinking in Newtonian physics. 
OK, there’s a lot in common. Mathematically, a frame of 
reference is a coordinate system. Newtonian physics provides 
space with three fi xed coordinates (x,y,z). The structure of 
space was thought to be independent of time, and it was not 
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traditional to represent time as a coordinate at all. Minkowski 
introduced time as an explicit extra coordinate. We can draw 
two-dimensional Minkowski space-time as a plane (Figure 
26a). The horizontal coordinate, x, determines a particle’s 
position in space; the vertical coordinate, t, determines its 
position in time.’

‘But that is what I told you!’ the Time Traveller said excited-
ly. ‘Time is just a fourth dimension!’

‘Yes, but there’s an extra wrinkle that your civilization 
didn’t know about. I’ll get to it in a moment, but fi rst I have 
to explain something about my drawings. In full-blooded 
Minkowski space-time x is three-dimensional; but for 
convenience let’s pretend it’s one-dimensional. Later on I’ll 
have to represent space as being two-dimensional. The 
problem is that four dimensions of space-time don’t fi t 
conveniently onto two-dimensional paper, so a lot of the 
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fig 26 Minkowski space-time. (a) Space-time coordinates. (b) Light 
cones and a timelike curve.
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mathematics involves tricks for cutting down the number of 
dimensions of space. The simplest trick is to ignore a few 
dimensions.

‘As the particle moves, it traces out a curve in space-time 
called its world-line. If the velocity is constant, then the world-
line is straight, and its slope depends on the speed. Particles 
that move very slowly cover a small amount of space in a lot 
of time, so their world-lines are close to the vertical; particles 
that move very fast cover a lot of space in very little time, so 
their world-lines are nearly horizontal. In between, at an 
angle of 45°, are the world-lines of particles that cover a given 
amount of space in the same amount of time – measured 
in the right units. Those units are chosen to correspond via 
the speed of light – say years for time and light-years for space. 
What covers one light-year of space in one year of time?’

‘Um – light? ’
‘Of course. So 45° world-lines correspond to particles of 

light – light rays or photons – or anything else that can move 
at the same speed.’

‘Particles of light? ’
‘Look, just accept it as an image, OK? Think of light rays, if 

it makes you feel more comfortable.’
‘As you wish. My head is starting to ache.’
‘You ain’t seen nuthin’ yet, buster.’
‘My name is not Buster.’
‘A fi gure of speech. Anyway, you haven’t told me your 

name. Now, the extra wrinkle is that relativity forbids bodies 
that move faster than light. The mathematical reason is that 
their lengths would become imaginary – involving the square 
root of minus one – as would masses and the local passage of 
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time. So the world-line of a real particle can never slope more 
than 45° away from the vertical. Such a world-line is called a 
time-like curve (Figure 26b). Any event – point in space-time – 
has associated with it a light-cone, formed by the two diagonal 
lines at 45° inclinations that pass through it. It’s called a cone 
because when space has two dimensions, the corresponding 
surface really is a (double) cone. The forward region contains 
the future of the event, all the points in space-time that it 
could possibly infl uence; the backward region is its past, the 
events that could possibly infl uence it. Everything else is 
forbidden territory, elsewheres and elsewhens that have no 
possible causal connections with the chosen event.

‘Now, Pythagoras’ theorem tells us that in ordinary space, 
the distance between two points with coordinates (x,y,z) and 
(X,Y,Z) is the square root of the quantity

(x-X)2 + ( y-Y)2 + (z-Z)2.

In Special Relativity, there is an analogous quantity, called 
the interval between events (x,t) and (X,T); it is

(x-X)2 - (t-T)2.

Note the minus sign: time is special. That’s where your friend 
H.G. Wells went wrong. Time is another dimension, but it’s 
not like the spatial dimensions. Though it can get mixed up 
with them, to some extent, as I’ll explain in a moment. At 
any rate, the main point to understand is that along the lines 
of 45° slope where (x-X)2 = (t-T)2, so x-X = t-T or x-X = T-t,
the interval is zero. Those 45° lines are called null curves.’

‘I see that. I have studied the geometry of Monsieur 
Descartes. But what does this “interval” represent? ’
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I told him that the interval is related to the apparent rate of 
passage of time for a moving observer. The faster an object 
moves, the slower time on it appears to pass. This effect is 
called time dilation. As you approach a null curve – that is, 
travel closer and closer to the speed of light – the passage of 
time that you experience slows down towards zero. If you 
could travel at the speed of light, time would be frozen. No 
time passes on a photon.

‘It seems to me that time is somewhat mutable in this 
theory,’ said the Time Traveller thoughtfully.

‘That’s true. In fact, in 1911 Paul Langevin pointed out a 
curious feature of Special Relativity, known as the twin 
paradox. Suppose that (Figure 27) two twins, Rosencrantz and 
Guildenstern, are born on Earth. Rosencrantz stays there all 
his life, while Guildenstern travels away at nearly light-speed, 
and then turns round and comes home again at the same 

fi g 27 The twin paradox.
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speed. Because of time dilation, only six years (say) have 
passed in Guildenstern’s frame of reference, whereas 40 years 
have passed in Rosencrantz’s frame.’

‘But surely,’ said the Time traveller, ‘the circumstances are 
perfectly symmetric. In Guildenstern’s frame of reference, it 
is Rosencrantz who seems to travel at nearly the speed of 
light. So by the same argument, it is Rosencratz who ages 
less. And that is absurd.’

‘That’s why people think it’s a paradox. But it isn’t. It only 
seems paradoxical if you don’t actually look at a space-time 
diagram, because then you may think that it doesn’t matter 
which twin is used as the “fi xed” frame. But Guildenstern’s 
motion involves acceleration (positive and negative), while 
Rosencrantz’s doesn’t – and that destroys the apparent 
symmetry between the two twins. Acceleration is not a rela-
tive quantity in Einstein’s theory. Like I said, “relativity” is a 
silly name.’

The Time Traveller shook his head slowly – I couldn’t 
decide whether he didn’t believe what I was saying, or was 
overawed by its intellectual depth. ‘But it is only a theory, of 
course,’ he said, almost to himself. ‘Reality is not like that.’

‘ “Theory” has two meanings,’ I said. ‘One of them should 
really be “hypothesis”, but that sounds a bit pretentious. That 
means an idea put up for discussion and experiment. “Only a 
theory” applies fi ne to that one. But there’s a second meaning: 
“a body of concepts and results that has survived a long series 
of stringent experimental tests designed to reveal any fl aws.” 
You can’t legitimately dismiss anything like that with the word 
“only”. “Only an idea that has survived centuries of attempts 
to shoot it down . . . ” No, that doesn’t really work, does it? ’
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‘Well, be that as it may, the effect was tested back in the late 
twentieth century by transporting atomic clocks around the 
Earth on jumbo jets.’

‘I understand “clock”, but little else in that sentence.’
‘The clocks were fantastically accurate, and they were 

carried round the entire planet in very fast fl ying-machines. 
Of course, fl ying-machines are so slow compared to light 
that the time difference observed (and predicted) is only the 
tiniest fraction of a second.’

‘Um,’ said the Time Traveller. ‘Flying-machines?’
‘You’ve got a time machine – that’s much harder to build. 

Just take my word for it, my friend.’
‘So you are telling me that “the time is out of joint”, to 

continue your Shakespearean motif. Hamlet,’ he added as an 
afterthought.

‘Precisely. So it ought to be possible to exploit that out-of-
jointness to make a time machine.’

‘Just as I did.’
‘Yes. But without that ivory gizmo of yours, we’re going to 

have to use conventional physics, which means relativity. 
And to do that, we’re going to have to understand Einstein’s 
approach to gravity.’

The Time Traveller gawped at me. ‘What does gravity have 
to do with time travel? ’

To be continued . . .
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The story so far . . .

The Time Traveller has arrived at 

the offices of Hawkrose & Penking 

Heavy Engineering. His time machine 

is seriously damaged, and a lack of 

elephants makes any repair impossible. 

Nevertheless, Hawkrose & Penking may 

be able to help. He has been told about 

Special Relativity, in which the speed 

of light is constant.

Now read on . . .

8
Forward to the Future 2: 

Holes: Black, White, 
and Worm



T
HE TIME TRAVELLER gawped at me. ‘What does 
gravity have to do with time travel? ’

‘Everything. Though I admit it’s not obvious. You 
see, Einstein invented another theory, called General 

Relativity, which was a synthesis of Newtonian gravitation 
and Special Relativity. You know what Newton said about 
gravity?’

‘I am a highly educated man, sir. It is a force that moves 
particles away from the perfect straight line paths that they 
would otherwise follow. The force exerted by any particle of 
matter varies inversely as the square of the distance.’

‘OK. But let’s think geometrically. The paths that particles 
follow, in the absence of any forces such as gravity, are 
geodesics. That is, they are shortest paths, they minimize the 
total distance between their end points. In fl at Minkowski 
space-time, the analogous relativistic paths minimize the 
interval instead. The problem is to incorporate the effects of 
gravity consistently. Einstein’s solution was to think of 
gravity not as an extra force, but as a distortion of the struc-
ture of space-time, which changes the value of the interval. 
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This variable interval between nearby events is called the 
metric of space-time. The usual image is to say that space-
time becomes “curved”.’

‘Curved round what?’
‘It’s not curved round anything. It’s just intrinsically 

distorted compared to fl at space-time. You might as well ask 
“fl at along what?” about ordinary Euclidean space. The 
curvature is interpreted physically as the force of gravity, 
and it causes light-cones to deform. One result is “gravita-
tional lensing”, the bending of light by massive objects, which 
Einstein discovered in 1911 and published in 1915. The effect 
was fi rst observed during an eclipse of the Sun. More recently 
it has been discovered that some distant quasars – very 
powerful and very distant cosmological objects – produce 
multiple images in telescopes because their light is lensed by 
an intervening galaxy.’

Figure 28 illustrates this idea by showing a space-like 
section of space-time (in effect, one taken at a ‘fi xed’ instant of 
time, but the actual description is more technical because 
relativistic effects imply that ‘fi xed instant’ makes no sense at 
different locations) near a star. It takes the form of a curved 
surface that bends downwards to create a circular valley in 
which the star sits. This space-time structure is static: it remains 
exactly the same as time passes. Light follows geodesics across 
the surface, and is ‘pulled down’ into the hole, because that 
path provides a short cut. Particles moving in space-time at 
sub-light speeds behave in the same way. If you look down on 
this picture from above you see that the particles no longer 
follow straight lines, but are ‘pulled towards’ the star, whence 
the Newtonian picture of a gravitational force.
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‘Far from the star,’ I told him, ‘this space-time is very close 
indeed to Minkowski space-time; that is, the gravitational 
effect falls off rapidly and soon becomes negligible. Space-
times that look like Minkowski space-time at large distances 
are said to be asymptotically fl at. Remember that term: it’s 
important for making time machines. Most of our own 
Universe is asymptotically fl at, because massive bodies such 
as stars are scattered very thinly.’

The Time Traveller digested this information. ‘So I can 
give space-time any form I wish? That sounds implausibly 
fl exible.’

‘No. When setting up a space-time, you can’t just bend 
things any way you like. The metric must obey the Einstein 
equations, which relate the motion of freely moving particles 
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fig 28 Bending of light by gravity.
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to the degree of distortion away from “fl at” Minkowski 
space-time.’

‘I see. There is a connection between the distribution of 
masses within the space-time, and the structure of the space-
time itself. As if matter creates and moulds its own space and 
time.’

‘You’re very quick to catch on. It took Einstein years. Anyway, 
now I can explain how twentieth-century physicists interpreted 
the phrase “time machine” within the framework of General 
Relativity.’ I could see his interest suddenly increase. He was no 
longer listening just out of politeness. ‘A time machine lets a 
particle or object return to its own past, so its world-line, a 
time-like curve, must close into a loop. A time machine is just 
a closed time-like curve, abbreviated to CTC. Instead of asking “is 
time travel possible?” we ask “can CTCs exist?”.’

The Time Traveller leaned forward nervously, and his eyes 
narrowed. ‘And can they? ’

‘Well, in fl at Minkowski space-time, they can’t. Forward 
and backward light-cones – the future and past of an event – 
never intersect. But they can intersect in other types of space-
time. The simplest example takes Minkowksi space-time and 
rolls it up into a cylinder (Figure 29). Then the time coordin-
ate becomes cyclic.’

‘You mean history perpetually repeats itself, as in Hindu 
mythology?’

‘Sort of. Space-time repeats; what happens to history 
depends upon whether you think free will might be in oper-
ation. It’s a tricky question and one that Einstein’s equations 
don’t really address. They just govern the overall coarse 
structure of space-time.
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‘Although a cylindrical space-time looks curved, actually 
the corresponding space-time is not curved – not in the gravi-
tational sense. When you roll up a sheet of paper into a 
cylinder, it doesn’t distort. You can fl atten it out again and the 
paper isn’t folded or wrinkled. A creature that was confi ned 
purely to the surface would have diffi culty noticing that it 
had been bent, because distances on the surface wouldn’t 
have changed – unless it happened to wander all the way 
round the cylinder. In short the metric – a local property of 
space-time structure near a given event – doesn’t change. 
What changes is the global geometry of space-time, its 
overall topology.’

The Time Traveller sighed. ‘Another new word.’
‘Topology is a fl exible kind of geometry – it studies the 

properties of shapes that persist when the shape is continu-
ously deformed. Like the presence of holes, say, or knots.’

‘Ah. In my day this was called analysis situs, the analysis of 
position. It was very new and known only to a few specialist 
mathematicians.’

‘Well, now it’s very old, very respectable, and known 
to every child before it leaves its gestation-tank. Rolling 
up Minkowski space-time is an example of a powerful 
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fig 29 Simple example of a space-time with a CTC.
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 topological trick for building new space-times out of old 
ones: cut-and-paste. If you can cut pieces out of known space-
times, and glue them together without distorting their 
metrics, then the result is also a possible space-time.’

‘You are speaking metaphorically, of course.’
‘Well, until recently I’d have agreed with you. But when 

Hawkrose & Penking describes itself as a “heavy engineering” 
company, it really does mean heavy. Extremely heavy. But I’m 
getting ahead of myself.’

‘Like me,’ he said with a straight face. I laughed, and not 
just out of politeness: in his position I’d have had trouble 
producing any joke, however feeble.

‘I say “distorting the metric” rather than “bending”, for 
exactly the reason that I say that rolled-up Minkowski space-
time is not curved. I’m talking about intrinsic curvature, as 
experienced by a creature that lives in the space-time; not 
about apparent curvature as seen from outside. Apparent 
bending of this type is “harmless” – it doesn’t actually change 
the metric. Now, the rolled up version of Minkowski space-
time is a very simple way to prove that space-times that obey 
the Einstein equations can possess CTCs – and thus that time 
travel is not inconsistent with currently known physics. But 
that doesn’t imply that time travel is possible.’

‘I see that. There is a very important distinction between 
what is mathematically possible and what is physically 
feasible.’

He was sharp, I’ll hand it to him. ‘Yes. A space-time is 
mathematically possible if it obeys the Einstein equations. It 
is physically feasible if it can exist, or could be created, as 
part of our own Universe. Which is where the heavy 
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 engineering comes in. Unfortunately for you, there’s no 
reason to suppose that rolled-up Minkowski space-time is 
physically feasible: certainly it would be hard to refashion 
the Universe in that form if it wasn’t already endowed with 
cyclic time. The search for space-times that possess CTCs 
and have plausible physics is a search for more plausible 
topologies. There are many mathematically possible topolo-
gies, but – as with the proverbial Irishman giving direc-
tions – you can’t get to all of them from here.

‘However, you can get to some remarkably interesting 
ones. In classical Newtonian mechanics, there is no limit to 
the speed of a moving object. Particles can escape from an 
attracting mass, however strong its gravitational fi eld, by 
moving faster than the appropriate escape velocity. In an 
article presented to the Royal Society in 1783, John Michell 
observed that this idea, combined with that of a fi nite velocity 
for light, implies that suffi ciently massive objects cannot 
emit light at all – because the speed of light will be lower than 
the escape velocity. In 1796 Pierre Simon de Laplace repeated 
these observations in his Exposition of the System of the World.
Both of them imagined that the Universe might be littered 
with huge bodies, bigger than stars, but totally dark.’

‘That is a very curious idea indeed.’
‘You said it. They were both a century ahead of their time. 

In 1915 Karl Schwarzschild took the fi rst step towards 
answering the analogous question within the context of 
General Relativity, when he solved the Einstein equations 
for the gravitational fi eld around a massive sphere in a 
vacuum. His solution behaved very strangely at a critical 
distance from the centre of the sphere, now called the 
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Schwarzschild radius. When it was discovered, its mathemat-
ical signifi cance seemed to be that space and time lost their 
identity in Schwarzschild’s solution, and became meaning-
less. However, the Schwarzschild radius for the Sun’s mass is 
2 km, and for the Earth 1 cm – measured from the centre, so 
it is buried so deep that they couldn’t go there to see if 
anything interesting occurred. What would happen to a star 
that was so dense that it lay inside its own Schwarzschild 
radius? No one knew.

‘Then, in 1939, Robert Oppenheimer and Hartland Snyder 
showed that such a star would collapse under its own gravi-
tational attraction. Indeed a whole portion of space-time 
would collapse to form a region from which no matter, not 
even light, could escape. This was the birth of an exciting 
new physical concept. In 1967 John Archibald Wheeler coined 
the term black hole, and the new concept was christened.’

The development over time of a static black hole – one that 
doesn’t rotate – is shown in Figure 30, in which space is repre-
sented as two-dimensional and time runs vertically from 
bottom to top. An initial radially symmetric distribution of 
matter (the shaded circle) shrinks to the Schwarzschild 
radius, and then continues to shrink until, after a fi nite time, 
all the mass has collapsed to a single point, the singularity. 
From outside, all that can be detected is the event horizon at the 
Schwarzschild radius, which separates the region from which 
light can escape from the region that is forever unobservable 
from outside. Inside the event horizon lurks the black hole.

Figure 30a is the sequence of events seen by a hypothetical 
observer on the surface of the star, and the time coordinate t
is the one experienced by such an observer. If you were to 



108 | CHAPTER 8

watch the collapse from outside you would see the star 
shrinking, towards the Schwarzschild radius, but you’d never 
see it get there. As it shrinks, its speed of collapse as seen 
from outside approaches that of light, and relativistic time-
dilation implies that the entire collapse takes infi nitely long 
when seen by an outside observer, as in Figure 30b. However, 
you’d see the light emitted by the star shifting deeper and 
deeper into the red end of the spectrum. Inside a black hole, 
the roles of space and time are reversed. Just as time inex-
orably increases in the outside world, so space inexorably 
decreases inside a black hole.

‘That’s where the scope for engineering comes in,’ I said. 
‘Hawkrose & Penking have developed a whole battery of 
techniques, from quantum foam enlargement to improba-
bility calculus. Because the space-time topology of a black 
hole is asymptotically fl at – like Minkowski space-time at 
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fig 30 Formation of a black hole as seen by (a) an observer at the 
surface of the collapsing mass and (b) an external observer.
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large distances – it can be cut-and-pasted into the space-time 
of any Universe that has reasonably large asymptotically fl at 
regions, such as our own. This makes black hole topology 
physically plausible in our Universe. Indeed, the scenario of 
gravitational collapse makes it even more plausible: you just 
have to start with a big enough concentration of matter, such 
as a neutron star or the centre of a galaxy. That’s what I mean 
by heavy engineering. The technology of the thirty-fi rst 
century can build black holes. We use matter-processors – 
modifi ed neutron stars mostly, with gravitational traps and 
heavy-duty laser-compressors.

‘However, a static black hole doesn’t possess CTCs. The 
next step is to notice that Einstein’s equations are time- 
reversible: to every solution there corresponds another that 
is just the same, except that time runs backwards. The time-
reversal of a black hole is a white hole, and it looks like Figure 30
turned upside down. An ordinary event horizon is a barrier 
from which no particle can escape; a time-reversed horizon 
is one into which no particle can fall, but from which parti-
cles may from time to time be emitted. So, seen from the 
outside, a white hole would appear as the sudden explosion 
of a star’s worth of matter, coming from a time-reversed 
event horizon.’

‘Why should the singularity inside a white hole suddenly 
decide to spew forth a star, having remained unchanged 
since the dawn of time?’ protested the Time Traveller.

‘Good point. It makes sense for an initial concentration of 
matter to collapse, if it is dense enough, and thus to form a 
black hole; but the reverse seems to violate causality. It 
doesn’t, of course – but the cause lies outside our own 
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Universe, so we don’t see the result coming. Let’s just agree 
that white holes are a mathematical possibility, and notice 
that they too are asymptotically fl at. So if you knew how to 
make one, you could glue it neatly into your own Universe. 
Hawkrose & Penking have just developed an effective method 
for doing that, based on the uncertainty principle. We use a 
Heisenberg amplifi er to make the position of matter so 
uncertain that it may well be outside the normal Universe 
altogether, and then we can switch on a chronokatoptron to 
persuade everything to happen in reverse time, since the 
system doesn’t know which time-frame it should be in.

‘Not only that: we can glue a black hole and a white hole 
together. We cut them along their event horizons with a 
cosmotome and sew the edges together with cold dark 
matter.’ I ignored his blank look. ‘The result – more accur-
ately, a fi xed space-like section of it – is shown in Figure 31:
a sort of tube. Matter can pass through the tube in one 
 direction only: into the black hole and out of the white. It’s a 

black hole

white hole

event horizon

fig 31 A wormhole.
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kind of matter-valve. The passage through the valve is 
achieved by following a time-like curve, because material 
particles can indeed traverse it.

‘Because the topology of Figure 31 is asymptotically fl at at 
both ends of the tube, both ends can be glued into any asymp-
totically fl at region of any space-time. You could glue one end 
into our Universe, and the other end into somebody else’s. Or 
you could glue both ends into ours – anywhere you like (except 
near a concentration of matter). Now you’ve got a wormhole.

‘Hawkrose & Penking make the best wormholes in the 
Universe,’ I said with pride. ‘They’re called wormholes 
because they look like the holes a maggot bores in an apple. 
Only here the apple is – well, not so much space-time as 
everything that’s not space-time.’ A wormhole is shown sche-
matically in Figure 32; but you have to remember that the 

black
hole

white
hole

long way

short cut

fig 32 Using a wormhole as a matter-transmitter. (The length of 
the wormhole is exaggerated in the picture because the picture is 
drawn in normal space-time. It can actually be very short, even if 
the ends are far apart in ‘normal’ space-time, because distance is 
intrinsic to the space-time in the wormhole.)
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distance through the wormhole is very short, whereas that 
between the two openings, across normal space-time, can be 
as big as you like.

‘I see. A wormhole is a short cut through the Universe.’
‘Right,’ I said. ‘But that’s matter-transmission, not time travel.’
‘It nevertheless has some connection with time travel? ’ 

the Time Traveller asked urgently, his fi ngers shaking.
‘Well,’ I said, ‘that’d be telling . . . ’

To be continued . . .
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The story so far . . .

In relativity, ‘time machine’ means 

‘closed time-like curve’ or CTC. Nothing 

in the known laws of physics forbids 

such things. Hawkrose & Penking can 

take a black hole and a white hole and 

join them to form a wormhole. But that ’s 

matter-transmission, not time travel. 

Isn’t it?
Now read on . . .

9
Forward to the Future 3: 

Back to the Past, 
with Interest . . .



W
E STARED AT my picture of a wormhole (Figure 
32, previous chapter), hoping for inspiration. 
‘You do realize,’ I said to the Time Traveller, ‘that 
people used to think time travel was a theoret-

ical impossibility, a contradiction in terms?’
‘You are referring to the hoary old “grandfather 

paradox”?’
‘Well, he did have an impressive beard, but – oh, sorry, 

I misunderstood.’
‘People raised exactly that objection to my time 

machine.’
‘Yes, the idea goes back to René Barjavel’s story Le Voyageur 

Imprudent. You go back in time and kill your grandfather, but 
because your father isn’t born, neither are you, so you can’t go 
back to kill him . . . ’

‘So you don’t so you are born, so you do, so . . . ’
‘Quite.’
‘I only took that objection seriously after I had made my 

machine,’ said the Time Traveller. ‘I wondered . . . people did 
ask . . . but no, I quite liked the old gentleman, you see.’
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‘Don’t even think about it,’ I said. If you think about the 
problem using quantum mechanics, you can easily see it 
doesn’t exist.’

‘What kind of mechanics? ’
‘Quantum. New since your day. Quantum mechanics, the 

underlying physics of matter, is indeterminate. Many events, 
such as the decay of a radioactive atom, are random. One 
way to make this indeterminacy mathematically respectable 
is the “many worlds” interpretation invented by Hugh Everett 
Jr. This view of the Universe is very familiar to readers of 
science fi ction: our world is just one of an infi nite family of 
“parallel worlds” in which every combination of possibilities 
occurs. In 1991 David Deutsch noted that, thanks to the many 
worlds interpretation, quantum mechanics involves no 
obstacles to “free will”. Moreover – another standard science 
fi ction trope – the grandfather paradox ceases to be para-
doxical, because grandfather will be (or will have been) killed 
in a parallel world, not in the original one.’

The Time Traveller digested this for a moment. ‘That is a 
cause for some concern,’ he said. ‘If I do get back to my home 
time, how can I tell whether I’ve accidentally moved to a 
parallel Universe?’

‘Don’t worry,’ I said. ‘According to the many worlds inter-
pretation, that’s what you’re doing every time your constituent 
atoms choose whether or not to change their quantum state. 
Which, to be frank, is all the time. You’re perpetually switching 
from whichever Universe you happen to be in at that moment, 
to a parallel one – one for each possible choice of state.’

‘I am not convinced that your attempt to reassure me is 
terribly comforting, to be frank.’
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I hardly heard him. An idea of some sort was brewing in 
my brain; I could feel my subconscious trying to tell me 
something. But the Time Traveller was so eager to fi nd a way 
home that I couldn’t get enough peace and quiet for it to pop 
into conscious thought . . .

‘I think we should forget this quantum mechanics busi-
ness,’ he said, ‘and return to a simpler question. Is there a 
connection between wormholes and time machines?’

Of course! Was that what my subconscious was trying to tell 
me? No, I had a strange feeling it involved money . . .

‘Sure,’ I said. ‘It was noticed way back in 1988, when Michael 
Morris, Kip Thorne, and Ulvi Yurtsever realized that they could 
combine a wormhole with the twin paradox to get a CTC. I’d 
forgotten it until you asked. The idea is to leave the white end 
of the wormhole fi xed, and to tow the black one away (or 
zigzag it back and forth) at just below the speed of light.’

Figure 33 shows how this leads to time travel. The white 
end of the wormhole remains static, and time passes at its 
normal rate, shown by the numbers. The black end zigzags 
to and fro at just less than the speed of light; so time-dilation 
comes into play, and time passes more slowly for an observer 
moving with that end. Think about world-lines that join the 
two wormholes through normal space, so that the time 
experienced by observers at each end are the same: lines 
joining dots with the same numbers. At fi rst those lines 
slope less than 45°, so they are not time-like, and it is not 
possible for material particles to proceed along them. But at 
some instant, in this case time 3, the line achieves a 45° slope. 
After this ‘time barrier’ is crossed, you can travel from the 
white end of the wormhole to the black through normal 
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space – following a time-like curve. An example of such a 
world-line runs from point 5 in the white end of the worm-
hole to point 4 in the black. Once there, you can return 
through the wormhole, again along a time-like curve; and 
because this is a short cut you can do so in a very short period 
of time, effectively travelling instantly from point 4 at the 
black end to the corresponding point 4 at the white. This is 
the same place as your starting point, but one year in the past!
You’ve travelled in time. By waiting one year, you can close 
the CTC and end up at the same place and time that you 
started from. Notice that the corresponding ‘ends’ of the 
wormhole are not those with the same t-coordinate in 
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fig 33 Turning a wormhole into a time machine.
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Minkowski space, but those with the same ‘elapsed time’ for 
an observer that moves with them, as marked by the fi gures.

You can make your own wormhole in your own home. 
Take a plastic bin-liner and cut out the bottom. Fix one end, 
and imagine the other rushing to and fro at just below light-
speed, so that time inside it slows down. When the far end of 
the bag comes near, walk across to it. When you arrive, that 
end of the bag will be in your own past. Climb through it, 
and you’ll travel back in time.

If your imagination is vivid enough, that is.
The actual distance you have to travel through ordinary 

space need not be huge: it depends on how far the right end 
of the wormhole has to move on each leg of its zigzag path. 
In space of more than one dimension it can spiral rather than 
zigzag, which corresponds to making the black end following 
a circular orbit at close to light-speed. You could achieve this 
by setting up a binary pair of black holes, rotating rapidly 
round a common centre of gravity.

‘The further into the future your starting point is, the 
further back in time you can travel from that point,’ I told the 
Time Traveller.

‘Wonderful! I can wait several years if necessary.’
‘Ah,’ I said. ‘There’s a nasty snag. You can never travel back 

past the time barrier, and that occurs some time after you 
build the wormholes. There’s no hope of getting back to your 
home time.’ His face fell. So did mine. I’d fi nally fi gured out 
what my subconscious was trying to tell me. It did involve 
money. But it suffered from the same fault.

‘There’s another problem, too,’ I said. ‘Hawkrose & 
 Penking’s R&D department is working on it, but all we’ve got 



FORWARD TO THE FUTURE 3 : BACK TO THE PAST | 121

is a laboratory prototype. The question is: can you really 
build one of these devices? Can you really get through the 
wormhole? We can build the wormhole alright, and move its 
ends around. That’s just a matter of creating intense gravita-
tional fi elds, our stock-in-trade.

‘But the problem that bothers me most is what I call the 
“catfl ap effect”. When you move a mass through a wormhole, 
the hole tends to shut on your tail. It turns out that in order 
to get through without getting your tail trapped you have to 
travel faster than light, so that’s no good.’

‘Why?’
‘The easiest way to see that is to represent the space-time 

geometry using a Penrose map, invented by the twentieth 
century mathematical physicist Roger Penrose. When you 
draw a map of the Earth on a fl at sheet of paper you have to 
distort the coordinates – for example, lines of longitude may 
become curved. The Penrose map of a space-time also 
distorts the coordinates; but it is designed so that light-cones 
don’t change – they still run at 45° angles. Figure 34 shows a 
Penrose map of a wormhole. Any time-like path that starts 
at the wormhole entrance, such as the wiggly line shown, 
must run into the future singularity. There’s no way to get 
across to the exit without exceeding the speed of light.’

‘Which, you have told me, is impossible,’ said the Time 
Traveller.

‘Well, maybe not. We’re hoping to get round the diffi culty 
by threading the wormhole with exotic matter, exerting enor-
mous negative pressure, like a stretched spring. But in 1991
Matt Visser suggested an alternative geometry for a benign 
wormhole, and we’re going to test it out just as soon as we’ve 
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located a good source of exotic matter. The idea is to cut two 
identical cubes in space, and paste their corresponding faces 
together. Then we’ll reinforce the edges of the cube with 
exotic matter.’

‘It sounds complicated,’ said the Time Traveller.
‘Sure is. That’s what engineers do. Make complicated 

things work. However, there’s a more old-fashioned method 
that cuts out the need for exotic matter. And because it 
doesn’t involve building a wormhole, there’s no time-barrier 
effect. You can go back to any time you want. Depending on 
what nature has up her sleeve.’ Lots of money, if we struck 
lucky . . .

‘I don’t follow you,’ said the Time Traveller, interrupting 
my beautiful daydreams.

‘I’m talking about using a naturally occurring time 
machine. A rotating black hole. Formed when a rotating star 
collapses gravitationally. The Schwarzschild solution of 
Einstein’s equations corresponds to a static black hole, formed 
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fig 34 Penrose map of a wormhole.
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by the collapse of a non-rotating star. In 1962 Roy Kerr solved 
the equations for a rotating black hole, now known as a Kerr 
black hole. (There are two other kinds of black hole: the 
Reissner–Nordstrøm black hole, which is static but has elec-
tric charge, and the Kerr–Newman black hole which rotates 
and has electric charge.) It is almost a miracle that an explicit 
solution exists – and defi nitely a miracle that Kerr was able to 
fi nd it. It’s extremely complicated and not at all obvious. But 
it has spectacular consequences.

‘One is that there is no longer a point singularity inside the 
black hole. Instead, there is a circular ring singularity, in the 
plane of rotation (Figure 35). In a static black hole, all matter 
must fall into the singularity; but in a rotating one, it need 
not. It can either travel above the equatorial plane, or pass 
through the ring. The event horizon also becomes more 
complex; in fact it splits into two. Signals or matter that 
penetrate the outer horizon cannot get back out again; signals 
or matter emitted by the singularity itself cannot travel past 

outer horizon

ergosphere

static limit

singularity inner horizon

fig 35 Cross-section of a rotating black hole.
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the inner horizon. Further out still, but tangent to the outer 
horizon at the poles, is the static limit. Outside this, particles 
can move at will. Inside it, they must rotate in the same direc-
tion as the black hole, although they can still escape by 
moving radially. Between the static limit and the outer 
horizon is the ergosphere. If you fi re a projectile into the ergo-
sphere, and split it into two pieces, one being captured by the 
black hole and one escaping, then you can extract some of 
the black hole’s rotational energy.

‘The most spectacular consequence of all, however, is the 
Penrose map of a Kerr black hole, shown in Figure 36. The 
white diamonds represent asymptotically fl at regions of 
space-time – one in our Universe, and several others that 
need not be. The singularity is shown as a system of broken 
lines, indicating that it is possible to pass through it (going 
through the ring). Beyond the singularities lie antigravity 
Universes in which distances are negative and matter repels 
other matter. Any body in this region will be fl ung away 
from the singularity to infi nite distances. Several legal (that 
is, not exceeding the speed of light) trajectories are shown as 
curved paths. They lead through the wormhole to any of its 
alternative exits. The most spectacular feature of all, however, 
is that this is only part of the full diagram. This repeats indef-
initely in the vertical direction, and provides an infi nite number
of possible entrances and exits.

‘If we used a rotating black hole instead of a wormhole, 
and towed its entrances and exits around at nearly light-
speed with H&P matter-processing equipment, we’d get a 
much more practical time machine – one that you could get 
through without running into the singularity.’
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fig 36 Penrose map of a rotating black hole.

The Time Traveller rubbed his hands together happily. 
‘Then I shall soon be back in my own time. Come, let us 
prepare the remains of my machine, to accompany me on 
the return voyage.’

‘Not so fast,’ I said. ‘Let me check with the computer. Oh, 
bother. There are no rotating black holes within reach. 
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There’s one under construction, but the union’s on strike and 
it’s not been fi nished yet.’ He looked extremely disappointed. 
Me too. Wait, what had I been watching on the virtual reality 
hypermedia system the other night? Got it! ‘I’ve had an idea, 
hot off the press. If you don’t fancy trying to control Kerr 
black holes, you can settle for a much simpler kind of singu-
larity: cosmic string. This is a static space-time, so that space-
like sections remain unchanged as time passes.’

The best way to visualize cosmic string is to use two 
dimensions of space. Cut out a wedge-shaped sector and 
paste the edges together (Figure 37a). If you do this with 
paper you end up with a pointed cone (Figure 37b); but 

(a)
(b)

(c)

fig 37 (a) Spatial structure of cosmic string (fl attened). (b) Identi-
fying the edges of the missing sector to get a cone. (c) Adding an 
extra dimension of space.
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 mathematically you can just identify the corresponding 
edges without doing any bending. The time coordinate 
works just as it does in Minkowski space-time (and to get the 
right shape for light-cones you should identify the edges 
without making actual cones). If you throw in a third space 
coordinate and repeat the same construction on every 
perpendicular cross-section, you get a line mass. This is the 
fully fl edged cosmic string. To make a model of one, thread 
lots of identical cones on a length of – well, string (Figure 
37c). Remember, each cone is a constant-time section of the 
actual space-time.

‘I am not sure that I fully comprehend the physical inter-
pretation of a cosmic string as a space-time,’ said the Time 
Traveller.

‘Well, basically it’s that the cosmic string has a mass, 
proportional to the angle of the sector that gets cut out. But 
it doesn’t behave like an ordinary mass. Everywhere except 
the cone point, space-time is locally fl at – just like Minkowski 
space-time. The apparent curvature of a real cone is “harmless”. 
But the cosmic string creates global changes in the space-time 
topology, affecting the large-scale structure of geodesics – 
particle paths. For instance, matter or light that goes past a 
cosmic string is gravitationally lensed.’

‘Like distant galaxies can bend the light from a quasar? ’
‘Precisely. Now, in some ways a cosmic string is much like 

a wormhole, because the mathematical glue lets you “jump 
across” the sector of Minkowski space-time that is cut out. 
Way back in 1991, J. Richard Gott exploited this analogy to 
construct a time machine. More precisely, he showed that 
the space-time formed by two cosmic strings that whiz past 
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each other at nearly light-speed contains CTCs. The starting-
point is two static strings, symmetrically placed, as in Figure 
38, which as usual is a constant-time space-like section.’ The 
time coordinate is suppressed; but if it were added, it would 
run perpendicular to the page.

‘Because of the “gluing”, points P and P* are identical, and 
so are Q and Q*. The fi gure shows three geodesics joining 
two points A and B: the horizontal line AB, the line APP*B, 
and the symmetrically placed line AQQ*B. This demon-
strates gravitational lensing by the cosmic strings: an 
observer at B would see three copies of A, one along each of 
these three directions.

‘Gott calculated that if the two cosmic strings are close 
enough together, then it takes light longer to traverse the 
path AB than to traverse the other two. This has an impor-
tant consequence. If a particle starts from position A but at 
time T in the past, it can get to B at time T into the future. 
Call these events A(past) and B(future). If the strings R and S 
are now made to move, so that S moves rapidly to the right 
and R rapidly to the left, then A(past) and B(future) become 
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fig 38 Two cosmic strings, opened fl at for clarity.
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simultaneous in the frame of a stationary observer, thanks to 
time-dilation.

‘So, to construct the required CTC, we make the particle 
move from A(past) to B(future) passing via PP*; then by 
symmetry we make it return from B(future) to A(past) via 
QQ*. Gott’s calculations show that provided the cosmic 
strings travel at close to light-speed, this CTC really does 
exist – mathematically.’

The Time Traveller scratched his head and grimaced. ‘By 
now I have learned to ask: can such a scenario be realized 
physically? ’

‘Well . . . in 1992 Sean Carroll, Edward Farhi, and Alan Guth 
proved that there isn’t enough available energy in the 
Universe to build a Gott time machine. More precisely, the 
Universe never contains enough matter to provide such 
energy from the decay products of stationary particles.’

‘It seems yet again that I am trapped forever in my own 
future.’

‘Not necessarily . . . If we could develop a suffi ciently 
powerful new energy source . . . but I’m afraid that’s not in the 
works yet. However, I do recall that surveys of the distribu-
tion of galaxies in our Universe has revealed that they clump 
on vast scales, forming structures hundreds of millions of 
light-years long. This clumpiness is too great to have been 
caused by gravitational attraction among the known 
matter.’

‘So?’
‘One theory is that the clumps were “seeded” by naturally 

occurring cosmic strings. Provided Hawkrose & Penking’s 
data-banks contain the coordinates of a naturally occurring 
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cosmic string remnant – and provided there’s a wormhole 
available to transport you there – we may yet be able to send 
you home.’ And make me a fortune . . .

‘If so, mother Nature has outdone all of the engineering 
skills of Hawkrose & Penking.’

‘Except that you’ll need our wormholes to get you to the 
cosmic string,’ I pointed out, as I asked the computer to 
search for a suitable cosmic string with a nearby wormhole 
link. A few seconds passed, and then it chirped at me. ‘You’re 
in luck,’ I said. ‘Catch the 3.25 from Lunar Central on the 
Betelgeuse line, change at epsilon Aurigae to the Ophiuchi 
hotline, then grab a local commuter to Aldebaran. I’ll call a 
hovercab, pick up your machine, and buy you a ticket.’

‘But won’t that be expensive?’
‘Yes, I said. ‘Very. A year’s salary. However, there’s a way 

you can repay me.’ As I said this I gave the computer new 
instructions.

‘How?’ asked the Time Traveller. ‘I’d do anything to get 
back to the end of the nineteenth century.’

The printout whirred into motion. I handed him a sheaf of 
papers. ‘Here is a complete listing of the stock-market prices 
for major stocks over the entire period 1895–2999. I want you 
to start a trust fund in my name. Invest one pound in an 
account with the Bank of England – it’s still in existence 
today and it was in your time too – and use that printout to 
make sure that the investment grows very fast. Understand?’

‘Of course. If you can predict the future of the market, 
your fortune is guaranteed.’

‘Exactly. Well, provided we don’t get switched to a parallel 
world. But then, in the past parallel world whose future will 



FORWARD TO THE FUTURE 3 : BACK TO THE PAST | 131

become this one, parallel versions of us are probably doing 
the same thing. There’s a lot of convergence to history. I’m 
willing to risk it. Now, set up a board of trustees to make sure 
the system keeps working. Take 50% of the profi ts as an 
operating fee. Set the trust fund to mature on 27 January 
3001 – tomorrow – on presentation of my signature. Here’s a 
specimen signature to put on record.’

‘But what if I cheat and keep all the money?’ he asked.
‘I may just have to come back to the nineteenth century 

and convince you not to,’ I said.
‘Oh. Right. Do not worry yourself, I shall do what you 

ask.’
The hovercab arrived, and he left.
I have a gambling streak to my nature. I’d invested a year’s 

salary getting him back to his own time. But if the gamble 
pays off . . . well, let’s say I’ve got an important date tomorrow 
at the Bank of England.

FEEDBACK

Matt Visser’s idea of cutting two identical cubes in space, 

and pasting their corresponding faces together, bears an 

uncanny resemblance to a science fiction story that I wrote 

ten years earlier. Though I didn’t do the actual mathematics 

and physics, you understand, so I’m not claiming to have 
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anticipated him. The story was ‘Paradise misplaced’, Analog

101 no. 3, March 1981, 12–38. The protagonist, Billy the Joat 

(Jack Of All Trades), is hired to solve a mystery. The archi-

pelago world of Bahamba Bright should have 72,107 islands;

now it has 72,106. The small island of Trixydix has disap-

peared. The passage where Billy discovers how, after 

glimpsing his own face reflected in the ocean, reads like 

this:

The Joat picked up two chopsticks and laid them side by 

side on the tablecloth. ‘Imagine these are two planes in 

space,’ he said. ‘What an interphase transfer plane does is, 

it kind of slits space along the two planes and glues it all up 

wrong. It joins the left side of one slit to the right side of 

the other one, so you get a kind of cross-over effect. 

Anything going into one plane comes out of the opposite 

side of the other one. Go into one plane from the left, you 

come out of the other one on the right, and vice versa. 

What’s more, it doesn’t take any time to do it. It just jumps.

‘Suppose you set up the machinery needed to create a 

transfer plane across the base of Trixydix, connected to 

another one under the ocean somewhere else. Once it’s 

switched on, the planes come into being, and Trixydix seems 

to end at one of the planes. Above it is just ocean. Now, the 

plane is perfectly flat, therefore optically flat. The sheared 

rock – water interface acts as a mirror because it behaves 

just like a slice of polished rock with water on top. But as 

soon as the plane ceases to intersect the island, the rest of 

the interface is water – water, so you don’t see anything 
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peculiar. And the water moves freely across the interface, 

so you can’t tell there’s a boundary there at all.’

‘That’s all very well,’ said Lindilu, ‘but won’t you get the 

top half hovering in mid-ocean over the second plane?’

‘Yes, it’s got to be more complicated. I’d guess they 

used a box, with transfer planes for sides. Put a box round 

Trixydix; put another box round an empty piece of ocean. 

Cross-connect, and presto! No island.’
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You’d think that the geometry of cones 

was pretty much old hat. Not so. Glue 

two cones together by their bases. Slice 

down the middle. If they are just the 

right shape, you get a square. Twist one 

half through a right angle, and glue the 

pieces together again. This is a 

sphericon, a delightful mathematical 

toy.

10
Cone with a Twist



T
HE CONE IS probably most familiar today as an edible 
container for ice-cream, or – in quantity – as a 
device for directing traffi c away from roadworks. 
Its past glories lie in higher realms. The geometry of 

the cone intrigued the ancient Greeks, mainly because of the 
elegant curves that could be constructed by slicing a cone 
with a plane. Today the importance of these ‘conic sections’ – 
the ellipse, parabola, and hyperbola – rests on their applica-
tion to celestial mechanics, the movements of planets, 
comets, and other celestial bodies. The Danish astronomer 
Tycho Brahe made observations of the planets; the German 
mathematician, astrologer, and mystic Johannes Kepler 
calculated that the orbit of Mars must be an ellipse; and the 
English mathematical physicist Sir Isaac Newton deduced 
the inverse square law of gravity. The Apollo Moon landings 
were one consequence.

The Greeks anticipated none of this: they delighted in the 
intricate geometry of the conic sections for its own inner 
beauty, and they discovered how to use these curves to solve 
problems beyond the limited reach of ruler and compasses. 
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Those problems included trisecting the angle and duplicating 
the cube (constructing a cube with twice the volume of a 
given cube – effectively, constructing a line of length 3 2 ). 
The new curves could solve these problems because the 
points where two conic sections meet correspond to solu-
tions of equations of the third and fourth degrees. Ruler and 
compass can solve only fi rst- and second-degree equations. As 
it happens, both of these classical problems reduce to solving 
an equation of the third degree, a fact that is obvious for 
 duplicating the cube, and depends on some simple trigonom-
etry when it comes to trisecting the angle – see Chapter 20.
The other famous problem of antiquity, squaring the circle 
(constructing a square with the same area as a given circle) is 
insoluble even using conic sections – see Chapter 20 again.

The cone itself has generally been of less interest to math-
ematicians than its planar sections, perhaps because the cone 
is such a simple shape. Is there anything new left to say about 
the humble cone? Indeed there is. In May 1999 C.J. Roberts, a 
reader of the Mathematical Recreations column, wrote to me 
about a curious shape which he calls a ‘sphericon’. He even 
included two of them – and later sent me a huge box containing 
several dozen, for reasons I’ll explain in a moment.

The sphericon (Figure 39a) is a double-cone – two iden-
tical cones joined base to base – but with a twist. Literally. A 
cone placed on a fl at tabletop rolls round and round in circles. 
A double-cone can roll in a clockwise circle or an anticlock-
wise one, but it only rolls straight if you bowl it along at 
speed, or sit it on rails. A sphericon performs a controlled 
wiggle, which on average is straight. It is easy to make, beau-
tifully simple, and a lot of fun, especially if you make it in 
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quantity. I’ve never seen such a shape mentioned anywhere 
before – but who knows what exists out there in the great 
extelligence?

If you slice a double-cone along a plane that includes both 
vertices, you get a rhombic cross-section, a parallelogram 
with all four sides equal. If you use cones of just the right 
shape, you get a square cross-section. Unlike all other rhom-
buses, the square has an extra symmetry: rotate it through a 
right angle and it fi ts back into the same shape. So you can 
slice such a double-cone down the middle, twist one half 
through a right angle, and glue the two pieces back together. 
This is the sphericon. Thanks to the twist, it is not a double-
cone, but a much more interesting beast altogether. Two 
half-double-cones need not make a double-cone!

The sphericon can be made from a single piece of thin 
card, cut to a shape made from four identical sectors of a 
circle joined together so that they face in alternate directions 
(Figure 39b). The main calculation involved in designing this 

(a)

(b)

fig 39 (a) The sphericon. (b) How to make one from card.
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shape is to fi nd the angle between the two straight edges of 
the sector. Suppose the radius is 1 unit. When the double-cone 
has square cross-section, the base of each component cone 
has diameter 2 , by Pythagoras’ theorem. So the circumfer-
ence of the base is p 2 . The length of the edge of a sector is 
half that (because you cut the double-cone in half to make a 
sphericon). The angle of the sector therefore works out as p

/2 2  radians, or 90 2  degrees, which is roughly 127.28°.
If you cut out the shape shown, you can roll up the sectors 

into half-cones, and glue the tab to the matching edge. With 
a little adjustment if necessary, the circular base of the 
double-cone fi ts snugly with no gap, and you can tape the 
join for security if you wish.

The fi rst delight of the sphericon is: it rolls! Not only that: it 
rolls with a wiggle. First one conical sector is in contact with 
the ground, then the next. So as it moves forward it wiggles 
alternately to left and right. It is especially fascinating to start 
it at the top of a slight slope and watch it amble its wobbly way 
down. When Mr. Roberts’s letter arrived, a group of several 
professional mathematicians spent a pleasant half hour rolling 
sphericons down a table propped up on books to tilt it.

That letter also hinted at some of the sphericon’s fascin-
ating abilities:

It has one continuous face.
It will roll on a fl at surface.
One will roll round another, ad infi nitum.
Four will roll round each other in a square block.
Eight will fi t on the surface of one, each one poised to 

roll, and joined to two others.
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This block of nine will roll round another block of 
nine, ad infi nitum.

Intrigued, I asked for more information, and in return was 
sent an enormous cardboard box, which weighed virtually 
nothing! This was ‘a large lattice of about 50 sphericons’ 
neatly assembled with transparent tape. This lattice, like the 
atomic lattice of a crystal, repeats indefi nitely in three dimen-
sions. I guess I should count myself lucky – or maybe 
unlucky – that I didn’t receive an entire truckload.

One reason why the sphericon has such neat geometric 
properties is that its four ‘edges’ – the lines in Figure 39 where 
the component sectors meet – lie along four of the edges of a 
regular octahedron. The other four edges of the octahedron 
correspond to lines that bisect the vertex angles of the sectors, 
shown dotted. Now the octahedron, in turn, is closely related 
to the cube – if you put a dot in the middle of each face of a 
cube and join the dots by straight lines, you get an octahe-
dron. And cubes, of course, stack in a regular manner to 
form a fl at layer or to fi ll three-dimensional space.

There is, of course, far more to sphericon geometry than 
this, but it’s a good place to start.

Roberts invented the sphericon around 1970. Geometry 
was always his strong point at school, and he started work as 
a joiner’s apprentice. Not surprisingly, therefore, his fi rst 
sphericon was carved out of wood. His starting point was the 
Möbius band, a strip of paper joined end to end with a 180°
twist, well known to topologists and schoolchildren. Roberts, 
however, realized that since paper has a defi nite thickness, 
the band’s cross-section is really a long, thin rectangle. If you 
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make the cross-section into a square, you can join the ends 
with a 90° twist instead, getting a solid whose outer surface 
consists of a single curved face. However, this shape has a 
hole in the middle: it is a ring. Does there exist a solid that is 
not a ring whose outside has a single curved face? One day, 
working on a length of wood with square cross-section, 
Roberts started thinking about blending one face into the 
next by planing a curve round the ends. Do this at both ends, 
eliminate the wood in between, and you get a sphericon.

He made one out of mahogany and gave it to his sister, 
who has kept it ever since. Then he forgot the topic until 
1997, when I gave a series of televised mathematics lectures at 
Christmas – a regular event in the UK that goes back to 
Michael Faraday in 1826, though not on TV in those days, of 
course – and talked about symmetry. At that point his 
interest was revived, and he wrote to me.

Viewed from the right direction, in line with the middle of 
a sector, the sphericon looks like a square with one diagonal 
drawn in (Figure 40a). From another direction it looks like a 
right-angled isosceles triangle with a semicircle along its 
longest edge (Figure 40b). If two sphericons are placed next 
to each other (Figure 40c) then they can roll on each other’s 
surfaces. Figure 40d shows the result after a quarter of a 
revolution. Figure 40e shows four sphericons arranged so 
that they can all roll on their neighbours, simultaneously, 
forever. Eight sphericons can fi t around one, all poised so 
that any one of them can roll on the central one (Figure 41) – 
though it is not possible to do this so that the surrounding 
sphericons can also roll on each other. And so on. You can 
see where that huge box came from.
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(a) (b) (c)

(d)

(e)

fig 40 (a) Square cross-section. (b) Triangle plus semicircle. (c) 
Two sphericons poised to roll. (d) After a quarter turn. (e) Four 
sphericons poised to roll.

fig 41 Eight sphericons surrounding one, all poised to roll.

The possible arrangements of sphericons seem endless. I 
leave you the pleasure of playing with this remarkably simple 
and extremely clever mathematical toy, and inventing new 
arrangements for yourselves.
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FEEDBACK

Several readers, among them John D. Determan of Alhambra, 

California, and Cecil Deisch of Warrenville, Illinois, suggested 

using a cone with a 60° vertex. When sliced in half this has 

a cross-section that is an equilateral triangle, and two such 

half-cones can be glued together with a 120° twist. The 

resulting object rolls, but not far. Deisch came up with an 

intriguing variant: start with two cones having a 60° vertex, 

slice them at right angles to a slanting side of the cone, and 

join them base to base. (The bases are now ellipses.) This 

object can again be sliced in half to create an equilateral 

triangle, and two of these can be glued with a twist. David 

Racusen of Shelbourne, Vermont suggested starting with a 

cylinder having a square cross-section, and joining two 

halves with a 90° twist. And Don Bancroft of Brookfield 

 Illinois sent me a copy of his 1981 US Patent (see Further 

Reading) describing a rolling device made from two semicir-

cles joined at the middle of their straight sides with a 90°

twist. The patent also describes some variants on this idea.

WEBSITES

GENERAL :

 http://en.wikipedia.org/wiki/Sphericon

http://en.wikipedia.org/wiki/Sphericon
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ROBERTS’S WEBSITE :

 http://www.pjroberts.com/sphericon/

MOVING ‘3D’ IMAGES:

  http://www.interocitors.com/polyhedra/n_icons/index.html

http://www.pjroberts.com/sphericon/
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Our senses sometimes deceive us, and 

here’s a case in point. What shape is a 

teardrop? You won’t be surprised to hear 

that it ’s not teardrop-shaped. But you 

may be surprised by how fiendishly 

complicated it really is.

11
What Shape is 

a Teardrop?



And the bird on a twig
And the twig on a branch
And the branch on a tree
And the tree in the ground
And the green grass grew all around, all around,
And the green grass grew all around!

T
HE GUITARIST STRUMMED a fi nal chord, and the 
singers stopped.

‘Thank the Lord for that,’ muttered Oliver Gurney. 
‘If I’ve said it once I’ve said it a thousand times – ’

‘You have said it a thousand times,’ sighed Deirdre. ‘We’ve 
all heard you.’

‘ – the Potted Dormouse is not a pub that is improved by 
folk-singing.’

‘It’s a pub,’ I said, ‘with a warm fi re. It’s raining moggies 
and doggies outside. I know what gets my vote. At any rate, 
your petition did get rid of the Hammond Organ Night. 
Though I still don’t see why you had to send it to the Queen.
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The Managing Director of Fosdick’s Brewery would have 
been enough, I’m sure.’

‘I believe in going to the very top,’ said Oliver. ‘Oh God, I 
bet they’ll start on “The Village Pump” next.’

‘I like “The Village Pump”,’ said Deirdre. ‘I like all their 
songs, they make you see things in a new light.’

‘Oh, come now – ’
‘No, they do. Take that song about the bird on the twig and 

so forth . . . it makes you realize how complicated trees are. 
And how little bits of trees look just like whole trees, only 
smaller.’

‘Self-similarity,’ I said. ‘Fractal geometry. Big fl eas have 
lesser fl eas and so ad infi nitum. Hence bonsai.’

They’re used to me being obscure, and the switch from 
trees to fl eas confused nobody. ‘Bonsai? ’

‘The Japanese art of training little trees to resemble big 
ones. Wouldn’t work unless there was a scale-independent 
structure.’

‘I knew a bloke once did bonsai mountains,’ said Olly. It 
took a few seconds for us to twig.

‘You mean pet rocks?’ enquired Deirdre.
‘Suitably fragmented rocks do look a lot like mountains,’ I 

said.
‘He didn’t just sit a rock in a bowl, you know,’ said Olly. ‘It’s 

lots of work making proper bonsai mountains. He had all 
the gear – little hosepipes with spray-action nozzles and fans 
stuck on special stands to weather them with miniature rain-
storms, spark generators for small-scale lightning, lots of 
tiny mirrors to focus the Sun’s rays. Even a tiny snow 
machine.’
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‘Really? ’ Deirdre was interested in gardening and this just 
about counted.

‘Yeah. But he had to stop.’
‘Why?’
‘The rocks got infested with greenfl y. On skis.’ Deirdre hit 

him.
The guitarist stuffed his instrument into its case and 

propped it against the wall. ‘Time for a short break, folks,’ 
he said, and the singers disappeared in the general direction 
of the bar. Oliver followed them, returning in triumph a 
few minutes later with two foaming pints and a Blue Moon. 
He grabbed one pint and Deirdre grabbed the other. Giving 
me a very strange look, Olly pushed the Blue Moon in my 
direction.

Look, I’ve developed a taste for fancy cocktails, OK? I don’t 
have to apologise to anybody. Three-quarters of a measure 
of vodka, the same of tequila, one measure of blue curaçao, 
lemonade to taste, all over cracked ice – brilliant. I’d probably 
move on to a Brooklyn Bomber next, I told him.

Olly grimaced, took a deep draught from his mug, and 
grinned. ‘Beer’s better.’ He set the glass in front of him. He 
was about to say something when there was a clear plink!
sound. We all heard it. Olly looked around for the source, 
and we heard it again.

‘It’s your beer,’ said Deirdre.
‘Beer doesn’t go plink,’ said Olly.
‘Yours does. It’s drops of rain dripping from the ceiling. 

There must be a leak in the roof.’
I’ve never seen Olly move so fast. He grabbed the glass and 

held it to him like a mother protecting her newborn child 
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from hyenas. ‘Dilution,’ he explained obliquely. ‘D’you think 
I should have the landlord prosecuted for watering his beer?’

‘Olly, it was only two drops.’
‘It’s the principle,’ he muttered.
‘Well, I have a principle of not annoying perfectly decent 

landlords. It wasn’t done deliberately.’
We watched as the water continued to drip, hitting the 

table with a splash, throwing tiny beads of spray in all direc-
tions. ‘I can’t see what fascinates you so much,’ said Deirdre.

‘I’m trying to see – no, it all happens too fast. No wonder 
everybody gets it wrong.’

‘Gets what – ’
Oliver waved his pudgy hands to silence us. ‘Deirdre, you 

were saying how the folk-songs make you see everyday 
things in a new light. Raindrops – or teardrops . . . Let me ask 
you a question. What shape is a teardrop?’

She thought about it for a moment. ‘Teardrop-shaped, of 
course.’

He passed her a pen and a napkin. ‘Draw one for me.’ She 
drew a fat blob rather like a tadpole; round at the head and 
curving away to a sharp upwards-pointing tail (Figure 42).

Olly looked at it. ‘Why do you think it’s that shape?’
‘Well, that’s what they look like. The classic “teardrop” 

shape.’
‘Sure?’ Another drip splashed on the table. ‘Saw that as it 

went by, did you?’
‘Well, no. It moved too fast. But that’s how everybody draws 

them.’ Olly nodded, but said nothing. ‘You mean, everybody 
draws them wrong?’

‘No comment.’
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‘But when a drip falls off a tap, you get a kind of growing 
bulge of water hanging down, and then part of it sort of pulls 
off. So you get a sharp tail formed just before the drip 
detaches.’

‘Draw that too.’ She did (Figure 43).
‘Hmmm. You reckon the drop keeps its sharp tail as it 

falls.’
‘Yes.’
‘But the water hanging from the tap rounds off? ’
‘Yes. Surface tension.’
‘So why doesn’t surface tension round off the falling drop’s 

tail too?’
‘It gets dragged out behind because the drop’s moving.’
‘Sure?’
Deirdre paused, lips pursed in thought, then shook her 

head. ‘No, it doesn’t make sense. The tail would round off as 
well. Falling teardrops must be roughly spherical. Maybe 
fl attened a bit by air-resistance.’

fig 42 The classic ‘teardrop’ shape. But is it?
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Olly nodded. ‘Could oscillate, though. So you reckon the 
picture should really be more like this? ’ He drew Figure 44.

‘I guess. I’m not sure any more.’ She looked confused. Isn’t 
it amazing how tenuous our grip on reality can be?

‘I’ve read something about this,’ I said. ‘The amazing thing, 
to me, is that the answer wasn’t found long ago. Literally miles 
of library shelves are fi lled with scientifi c studies of fl uid 
fl ow – surely somebody took the trouble to look at the shape 
of a drop of water? Yet the early literature contains only one 
correct drawing, made over a century ago by the physicist 
Lord Rayleigh, and it was life-sized.’ I paused to draw breath. 
‘Which means it was so tiny that hardly anybody noticed it.’

‘Dead right,’ said Olly. ‘As a reward, you can buy the next 
round. The true shape didn’t become widely known until 

fig 43 Does a detaching droplet do this?

fig 44 Or this?
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1990, when the applied mathematician Howell Peregrine and 
colleagues at Bristol University photographed a separating 
water drop, and discovered that it is far more complicated – 
but also far more interesting – than you’d ever imagine.’ He 
rapidly sketched out a series of shapes, while I fought my way 
to the bar. By the time I came back, with two pints and a 
Harvey Wallbanger (they’d run out of cherry brandy so the 
Brooklyn Bomber was a non-starter), he’d just about fi nished 
(Figure 45).

‘That’s weird,’ said Deirdre.
‘No, it’s just orange juice, vodka, galliano, and a slice of 

cucumb – ’
‘Not your drink; the shape of the drop.’
‘It’s not at all what most people expect,’ said Oliver. ‘But it’s 

what really happens (Figure 46). It all begins with a bulging 
droplet hanging from the end of the tap. It develops a waist, 
which narrows, and appears to be heading towards the classic 
teardrop shape. But instead of pinching off to form a short, 
sharp tail, the waist lengthens into a long thin cylindrical 
thread, with an almost spherical drop hanging from its end.’

I picked up the sketch and stared at it. ‘I can see why the 
drop becomes spherical. It’s falling so slowly that gravity is 

fig 45 Sequence of changes of shape for a detaching droplet – 
theory.
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negligible. So it tries to minimize the energy in its surface 
tension, and that pulls it into a sphere.’

‘Why?’
‘Because surface tension is proportional to area, and the 

sphere has the smallest area for a given volume.’ He slapped 
me heartily on the back. ‘But I don’t see why that thread 
forms.’

‘Mostly viscosity,’ said Olly. ‘Stickiness. If the fl uid was 
syrup rather than water, you wouldn’t be surprised by a long 
dangling thread, would you? Water’s quite sticky too, though 
not as sticky as syrup.’

‘That’s all very well,’ said Deirdre. ‘But why doesn’t the 
thread go on forever?’

‘Instability! ’ I yelled, startling three old ladies sitting at the 
next table, playing cribbage. They gave me a sharp look. ‘Too 
long a thread becomes unstable,’ I said.

‘Exactly,’ said Olly, opening a packet of his favourite tripe-
and-beetroot crisps. Want some?’ he mumbled, waving the 
bag vaguely in my direction. I shook my head. ‘The insta-
bility makes the thread start to narrow, right at the point 
where it meets the sphere, until it develops a sharp point. 

fig 46 Sequence of changes of shape for a detaching droplet – prac-
tice.
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At this stage the shape looks like a knitting-needle that is 
just touching an orange. Then the orange falls off the needle 
and detaches, pulsating slightly as it falls: the drop has 
broken off.

‘But that’s only half the story.’ He stuffed more crisps into 
his mouth and washed them down with a swig of Fosdick’s 
best bitter. ‘Now the sharp end of the needle begins to round 
off, and tiny waves travel back up the needle towards its root, 
making it look like a string of pearls that become tinier and 
tinier. Finally the hanging thread of water narrows to a sharp 
point at the top end, and it too detaches. As it falls, its top 
end rounds off and a very similar series of waves travels 
along it.’

Deirdre and I both leaned back in our chairs, gazed into 
space, and then stared at Olly’s drawings. ‘Astonishing,’ said 
Deirdre. ‘I’d never imagined that dripping water could be so 
busy.’

‘No,’ I said. ‘Or so singular – and that makes it clear to me 
why nobody had previously studied the problem in any great 
mathematical detail.’

‘Why not?’
‘It’s too hard. You see, when the drop detaches, there is a 

singularity in the problem – a place where the mathematics 
becomes very nasty. The singularity is the tip of the 
“needle”.’

‘But why is there a singularity at all? Why does the drop 
detach in such a complex manner?’

Olly leaped in. ‘Because in 1994 the physicists Jens Eggers 
and Todd F. Dupont showed that the scenario is a conse-
quence of the Navier–Stokes equations of fl uid motion. 
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They simulated the equations on a computer, and reproduced 
Peregrine’s scenario.’ He looked like a Cheshire cat with two 
grins. When he noticed that I wasn’t as impressed as he’d 
hoped, his face fell. ‘Why the sour look?’ he asked me. ‘It was 
a brilliant piece of work.’

‘Absolutely,’ I said. ‘I’d be proud to have done something 
half as good. But I just don’t think it really answers the ques-
tion. It’s reassuring that the Navier–Stokes equations really 
do predict the correct scenario, but that of itself doesn’t 
help me understand it. There’s a big difference between 
crunching numbers and getting your brain around what 
the answers mean.’

Olly scratched his chin. ‘You’re talking about the philoso-
phy of explanation again, aren’t you?’

‘I’m talking about what kind of explanation makes me feel 
I’ve understood something. You can dress that up as phil-
osophy, I guess. It certainly isn’t science or mathematics as 
such – it’s about how we understand science and mathematics.

‘The kind of explanation that I’d like to see would be a 
simple train of logical thought that treats the shape in its 
own right and convinces me that it has to occur. I’m not sure 
anybody’s yet got an explanation for the falling drop that fi ts 
the bill exactly, but I’ve remembered some work of X.D. Shi 
and others at the University of Chicago, which is headed in 
that direction. The main conceptual idea, which was already 
present in Peregrine’s work, is a particular kind of solution to 
the equations of fl uid fl ow called a similarity solution.’

‘What’s that when it’s at home?’
‘It’s a solution with a certain kind of symmetry, which makes 

it mathematically tractable. It’s temporally self- similar – it 
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repeats its structure on smaller scales at different times. That’s 
why, once the neck of the thread starts to narrow, it keeps 
going, getting narrower and narrower until it forms a point 
singularity.’

‘I don’t follow you,’ said Olly.
‘Not surprising, I’m missing out a lot of mathematical 

detail. But the idea of a similarity solution explains the shape 
of the singularity, assuming that a similarity solution exists. 
That’s where the missing technique comes into – ’

‘Hey,’ Deirdre interrupted. ‘I’ve just realized that there’s an 
absolutely classic photograph which shows the singularity 
perfectly. Only it’s milk, not water, and it isn’t dripping 
downwards.’

‘Sorry?’
‘D’Arcy Thompson’s On Growth and Form, published in 1942.

The fi rst volume has a famous frontispiece, milk splashing 
into a dish. The splash is shaped like a crown.’ See Figure 47.

‘Oh, right,’ said Olly. ‘The photo was taken by Harold 
Edgerton of Massachusetts Institute of Technology. But it 
doesn’t look like my drawings.’

‘Yes it does. Each “spike” in the crown is like a small blob 
on the end of tube, and the tubes narrow down to sharp 
points where they meet the blobs.’

‘Peregrine’s paper did point out that the whole complex 
series of events is universal,’ I said. You always see the exact 
same sequence of shapes when drops detach – in fl uids with 
the appropriate viscosity.’

Oliver decided to test the viscosity of his beer. It slid down 
very easily, not at all like syrup. ‘Did I tell you about the time 
I invented a tailored bacterium that turned oil into treacle? ’ 
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he asked. ‘And very nearly destroyed the entire North Sea 
oilfi el – ’

‘Yes, a hundred times,’ said Deirdre. ‘You saved the day by 
inventing a tailored yeast to ferment the treacle into alcohol, 
and created a North Sea beerfi eld.’5

‘Long since run dry,’ he said sadly.
‘Speaking of treacle,’ I put in, ‘Shi’s group took the idea of 

a similarity solution further, and asked how the shape of the 

fig 47 Harold Edgerton’s famous milk splash. Each ‘spike’ in the 
crown looks like the ‘needle-and-orange’ picture, the third frame in 
fi gure 45.

5 See my science fi ction story ‘The treacle well’, Analog 103 no. 10,
Sept. 1983, 40–58.
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detaching drop depends on the fl uid’s viscosity. They 
 performed lots of experiments, using mixtures of water and 
glycerol to get different viscosities. They also carried out 
computer simulations and developed the theoretical approach 
via similarity solutions. What they discovered is that for 
more viscous fl uids, a second narrowing of the thread occurs 
before the singularity forms and the drop detaches.’

‘You mean you get something more like an orange 
suspended by a length of string from the tip of a knitting 
needle?’ asked Deirdre.

‘Precisely. And now, thanks to the self-similarity of the 
process – ’

She was ahead of me. ‘At higher viscosities still, there is a 
third narrowing – an orange suspended by a length of cotton 
from a length of string from the tip of a knitting needle. And 

fig 48 Successive narrowings in a drop of viscous fl uid as calcu-
lated by X.D. Shi. (Left) The fi rst four narrowings. (Middle) Blow-up 
of the lower part showing three more narrowings. (Right) Blow-up 
of the fi fth, sixth and seventh narrowings.
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as the viscosity goes up, so the number of successive narrow-
ings increases without limit. Right? ’

‘Exactly. At least, provided we ignore the limit imposed by 
the atomic structure of matter.’ See Figure 48.

‘Amazing,’ said Oliver.
‘Never take things for granted,’ I said. ‘It’s the simple ques-

tions that have the most surprising answers. But someone 
has to ask the question, not just assume the answer is what 
everybody would expect.’

‘I’ve got a simple question for you,’ said Deirdre.
‘What?’
‘Do you want another drink? It’s my round.’
Olly and I looked at her, then at each other. ‘Some simple 

questions do have the answer everybody would expect,’ we 
said in unison.

FEEDBACK

Bonsai mountains feature in Terry Pratchett’s humorous 

fantasy novel Thief of Time, the 26th in his Discworld series, 

which now numbers 32 plus 4 juveniles and numerous spin-

offs. Lu-Tze, a history monk, grows them as a hobby. It takes 

time – but a history monk has all the time in the world, 

having access to the ancient technology of the procrastin-

ator, which can wind and unwind time.
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To appreciate how widespread the conventional idea of a 

‘teardrop’ shape is, look the word up on Google™ Images.
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More and more, mathematics is tangling 

with the law. No, they’re not making 

quadratic equations illegal – sorry! DNA 

evidence has brought probability theory 

into the courts, thereby opening the 

proverbial can of worms. So what 

are the courts doing? Trying to throw 

the mathematics out again.

12
The Interrogator’s 

Fallacy



M
ATHEMATICS IS INVADING the courtrooms.

Juries used to be instructed to convict the 
accused of a crime provided they were sure 
‘beyond reasonable doubt’ of their guilt. This 

instruction is somewhat qualitative: it all depends upon what 
each juror considers to be reasonable. A future civilization 
might attempt to quantify guilt by adopting a common 
science fi ction scenario in which the jury is replaced by a 
Court Computer. The computer weighs the evidence, calcu-
lates a probability of guilt, and terminates the trial when that 
probability becomes suffi ciently close to 1 (which signifi es 
absolute certainty, an ideal seldom attained). But today’s 
civilization does not have Court Computers, so juries are 
being forced to grapple with probability theory. One reason 
is the increasing use of DNA evidence. The science of DNA 
profi ling is relatively new, so the interpretation of DNA 
evidence relies upon assessing probabilities. Similar prob-
lems could have arisen when conventional fi ngerprinting 
was fi rst introduced, but lawyers were presumably less 
sophisticated in those days: at any rate, fi ngerprint evidence 



THE INTERROGATOR’S FALLACY | 163

is seldom contested on probabilistic grounds. Though even 
that looks set to change, as more lawyers start to fi nd reasons 
(sound or not) to dispute the reliability of fi ngerprints.

In 1995 Robert Matthews – whose work on the ‘Anthropo-
murphic Principle’ was featured in Math Hysteria – pointed 
out that an even longer-standing source of evidence in court 
cases ought to be analysed using probability theory. Namely: 
confessions. One of Matthews’s most surprising conclusions 
is that there are circumstances under which the existence of 
a confession adds weight to the view that the accused is inno-
cent rather than guilty. He calls this discovery ‘The Interro-
gator’s Fallacy’.

To Tomás de Torquemada, the fi rst Spanish Grand Inquisi-
tor, a confession was complete proof of guilt – even if that 
confession was extracted under duress, as it generally was. 
Indeed Torquemada authorized the use of torture to obtain 
evidence, and is estimated to be responsible for some two 
thousand people being burnt at the stake on the basis of 
forced confessions. Modern legal practice is generally scep-
tical about confessions known to have been obtained under 
duress, but in the mid-1990s there was a series of high-profi le 
terrorism convictions in the UK, that hinged upon confes-
sional evidence. The convictions were overturned on appeal 
because of doubts that the confessions were genuine. 
Matthews’s ideas offer a general reason for distrusting confes-
sions in terrorist cases unless they are supported by appro-
priate corroborative evidence.

The main mathematical idea required is that of condi-
tional probability. This tells us how likely certain events are, 
given that other events have happened. Human intuition for 
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probabilities is notoriously poor – for instance, we can be 
unduly impressed by ‘coincidences’ even when there are 
prosaic explanations. Things are even worse when it comes 
to conditional probabilities. Here’s a famous case in point.

Mr. and Mrs. Smith tell you that they have two children, 
and one of them is a girl. They don’t say whether the other is 
a boy or a girl, and for all we know, either is possible. Given 
this information, what is the probability that the other child is 
a girl? You may assume that at birth, boys and girls are 
equally likely, each with a probability of ½, and boys or girls 
occur independently each time. These assumptions are not 
entirely true, but they’re close enough and avoid complica-
tions which distract from the reasoning without greatly 
changing the result.

The refl ex response is that the other child is either a boy or 
a girl, equally likely, so the probability that the child is a girl 
is 1/2. However, there are four possible gender distributions: 
BB, BG, GB, GG – where B and G denote ‘boy’ and ‘girl’, and 
the order is that in which the children were born. Each combi-
nation is equally likely, and so has probability 1/4. In exactly 
three cases, BG, GB, GG, the family includes a girl; in just one 
of those, GG, the other child is also a girl. So in fact the prob-
ability of two girls, given that there is at least one girl, is 1/3.

On the other hand, suppose that instead the Smiths tell 
you that their elder child is a girl. What is the probability that 
the youngest is a girl too? This time the possible gender 
distributions are BG and GG, and the younger is a girl only 
for GG, so the probability becomes 1/2. This conclusion 
seems unreasonable to many, but with the stated assump-
tions the calculations are correct. They puzzle us because 
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we don’t have a good feel for the paradoxical features of 
conditional probabilities. The two stories of the Smiths’ chil-
dren show that conditional probabilities involve specifying a 
context. The choice of context can have a strong effect on the 
computed probability. But because the context is usually 
implicit rather than explicit, we don’t pay enough attention 
to it, and can easily be misled.

Go back to Chapter 1 and look at Figure 2, which lists all 
36 ways to roll two dice – each pairing equally likely. Given 
that at least one die shows a 6, what is the probability that 
they both do? There are 11 pairs with a 6 somewhere, all 
equally likely, and exactly one of those has two 6’s. So the 
conditional probability here is 1/11. Now ask a similar ques-
tion, but with the condition changed to ‘the white die shows 
a 6’. Now there are only 6 pairs that satisfy the condition, so 
the conditional probability becomes 1/6. The situation for 
dice is analogous to that for children.

To see how subtle such issues are, suppose that you already 
know that Mr. and Mrs. Smith have two children, but have no 
idea of their sexes. One day you see them in their garden 
(Figure 49). One child, visible, is a girl. The other is partially 
hidden by the dog, and the sex is uncertain. What is the prob-
ability that the Smiths have two girls? You could argue that 
the question is just like the fi rst scenario above, giving a prob-
ability of 1/3. Or you could argue that the information 
presented to you is ‘the child not playing with the dog is a girl’, 
like the second scenario in that it distinguishes one child from 
the other, so the answer is 1/2. Mr. and Mrs. Smith, who know 
that the child playing with the dog is young William, would 
say that the probability of two girls is 0. So who is right?
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The answer depends upon a choice of context. Probabil-
ities are about models of reality, not about reality itself. Have 
you sampled randomly from situations in which there are (in 
principle) many different families in which either child, 
randomly, plays with the dog? Or from families in which 
only one child – always the same one – ever plays with the 
dog? Or are you looking only at a specifi c family, in which 
case probabilities are the wrong model altogether?

The interpretation of statistical data requires an under-
standing of the mathematics of probability and the context in 
which it is being applied. Throughout the ages lawyers have 
shamelessly abused jurors’ lack of mathematical sophistication, 

fig 49 The Smiths’ children and their dog. What is the probability 
that the child hidden by the dog is a girl?
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either to obtain convictions of innocent people or to acquit 
the guilty. One example – arising in the context of DNA pro-
fi ling – is the ‘Prosecutor’s Fallacy’. I’d like to say that the 
courts understand this one now, and mostly they do. However, 
the tragic case of Sally Clark, a solicitor wrongly convicted of 
murdering her own children, suggests that there is still some 
way to go. The trial was in 1999, and involved neither DNA 
profi ling nor the Prosecutor’s Fallacy: see Websites for the 
details.

Back to DNA profi ling (or DNA fi ngerprinting, or genetic 
fi ngerprinting). First, some background; then we’ll see what 
the fallacy is.

The idea of DNA profi ling was invented in 1985 by Alec 
Jeffreys of the University of Leicester, and centres around 
so-called VNTR (Variable Number of Tandem Repeat) 
regions in the human genome. In each such region a particu-
lar DNA sequence is repeated many times. VNTR sequences 
vary greatly between individuals, and are widely believed to 
identify them uniquely. In ‘multi-locus probes’, standard 
techniques from molecular biology are used to look for 
matches between several different VNTR regions in two 
samples of DNA: one related to the crime, the other taken 
from the suspect. Suffi ciently many matches should provide 
overwhelming statistical evidence that both samples came 
from the same person.

The Prosecutor’s Fallacy is based on a confusion of two dif-
ferent probabilities. The ‘match probability’ answers the ques-
tion ‘What is the probability that an individual’s DNA will 
match the crime sample, given that they are innocent?’ 
However, the question that should concern the court is ‘What 
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is the probability that the suspect is innocent, given a DNA 
match?’ Conditional probabilities usually change when the order 
of the statements is swapped, so the two questions can have 
wildly different answers. Again, the source of the difference is 
contextual. In the fi rst case, the individual is conceptually 
being placed in a population chosen for scientifi c conven-
ience – say people of the same sex, size, and ethnic grouping. 
In the second case, they are being placed in a less well-defi ned 
but more relevant, and typically smaller, population – those 
people who might reasonably have committed the crime.

The use of conditional probabilities in such circumstances 
is governed by a theorem credited to the English probabilist 
Thomas Bayes. Let A and C be events, with probabilities P(A)
and P(C) respectively. Write P(A|C) for the probability that A
happens given that C has defi nitely occurred. Let A & C
denote the event ‘both A and C have happened’. Then the 
simplest version of Bayes’ theorem tells us that

= ( & )
( | )

( )
P A C

P A C
P C

.

This simple case of the theorem is really just a defi nition of 
conditional probability, but there is a more general version, 
which this case illustrates.

For example, in the case of the Smith children, fi rst 
scenario, we have

C = ‘at least one child is a girl’
A = ‘the other child is a girl’
P(C) = 3/4
P(A & C) = 1/4
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because A & C is also the event ‘both children are girls’, or 
GG. Now Bayes’ theorem says that the probability that the 
other child is a girl, given that one of them is a girl, is (1/4)/
(3/4) = 1/3, the value we arrived at earlier. Similarly, with the 
second scenario, Bayes’ theorem gives the answer 1/2, also as 
before.

For the application to confessional evidence, Matthews 
lets

A = ‘the accused is guilty’
C = ‘they have confessed’.

As is normal in Bayesian reasoning, he takes P(A) to be the 
‘prior probability’ that the accused is guilty – that is, the 
probability of guilt as assessed from evidence obtained before
the confession. Let A' denote the negation of event A (namely 
‘the accused is innocent’). Then (by a calculation outlined in 
Box 1) Matthews uses Bayes’ theorem to derive the formula

=
+ −

( | )
( )
p

P A C
p r p1

where to keep the algebra simple we write

p = P(A)

and

= ( | ')
( | )

P C A
r

P C A

which we call the ‘confession ratio’. Here P(C|A') is the prob-
ability of an innocent person confessing, and P(C|A) is that 
of a guilty person confessing. The confession ratio is less 
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than 1 if an innocent person is less likely to confess than a 
guilty one, but it is greater than 1 if an innocent person is 
more likely to confess than a guilty one.

If the confession is to increase the probability of guilt, then 
we want P(A|C) to be larger than P(A), which equals p. There-
fore we need

( )
p

p
p r p

>
+ −1

which some simple algebra boils down to r < 1. This inequality 
has a striking interpretation:

The existence of a confession increases the probability 
of guilt

if and only if
An innocent person is less likely to confess than a 
guilty one.

This actually sounds reasonable, if you think about it. But 
the implication is less intuitive: sometimes the existence of a 
confession may reduce the probability of guilt. In fact this will 
occur whenever an innocent person is more likely to confess 
than a guilty one. But could that ever happen?

In terrorist cases, the answer is ‘conceivably, yes’. Psycho-
logical profi les indicate that individuals who are more 
suggestible, or more compliant, or just more easily scared, 
are more likely to confess under interrogation. These descrip-
tions seldom apply to a hardened terrorist, who will be 
trained to resist interrogation techniques. An innocent, 
bewildered person, with no training, subjected to extreme 
verbal threats, may well confess merely because they are at 
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their wits’ end and will say anything to get the interrogation 
to stop. It is plausible that this is what happened when 
securing the convictions that were later reversed in UK 
courts.

Bayesian analysis demonstrates some other counterintui-
tive features of evidence. For example, suppose that initial 
evidence of guilt (X) is followed by supplementary evidence 
of guilt (Y). A jury will almost always assume that the prob-
ability of guilt has now gone up. But probabilities of guilt do 
not just accumulate in this manner. In fact, the new evidence 
increases the probability of guilt only if:

The conditional probability of the new evidence, 
given the old evidence and the accused being guilty

exceeds
The conditional probability of the new evidence, given 
the old evidence and the accused being innocent.

When the prosecution case depends on a confession, two 
quite different things may happen. In the fi rst, X is the confes-
sion and Y is evidence found as a result of the confession – 
for example, discovery of the body where the accused said it 
would be. In this case, an innocent person is unlikely to 
provide such information, and Bayesian considerations show 
that the probability of guilt is increased, as we would expect. 
So corroborative evidence that depends upon the confession 
being genuine increases the likelihood of guilt.

On the other hand, X might be the discovery of the body 
and Y a subsequent confession. In this case the evidence 
provided by the body does not depend upon the confession, 
and so cannot corroborate it. Nevertheless, there is no 
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‘Body-fi nder’s Fallacy’ analogous to the Interrogator’s Fallacy, 
because it is hard to argue that an innocent person is more 
likely to confess than a guilty one just because they know 
that a body has been discovered.

Of course it would be silly to suggest that every potential 
juror should take – and pass – a course in Bayesian inference, 
but it seems entirely feasible that a judge could direct them 
on simple principles such as those pointed out by Matthews. 
The Interrogator’s Fallacy is not hard to understand. Exactly 
the same principles apply to DNA profi ling, but the Interro-
gator’s Fallacy explains where the reasoning goes haywire in 
circumstances that are much more intuitive to jurors, and 
the mathematical point is not obscured by fancy biochem-
ical technology. A brief review of the Interrogator’s Fallacy 
could be an excellent way to discourage lawyers from making 
fallacious claims about DNA evidence.

BOX 1 MATTHEWS’S FORMULA

By Bayes’ theorem

= ( & )
( | )

( )
P A C

P A C
P C

and similarly

= ( & )
( | )

( )
P A C

P C A
P A

.
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But C & A = A & C, so we can combine the two equa-
tions to get

= ( | ) ( )
( | )

( )
P C A P C

P A C
P A

.

Moreover,

P(C) = P(C|A)P(A) + P(C|A')P(A')

since either A or A' must happen, but not both. Finally, 
P(A' ) = 1-P(A), so if P(A) = p then P(A' ) = 1-p. Putting 
all this together, we get the complicated looking 
formula

=
+
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( | )
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P A P A

P C A

.

Replacing P(A) by p and P(C|A)/P(C|A') by r simplifi es 
this to

( | )
( )
p

P A C
p r p

=
+ −1

as claimed.
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FEEDBACK

I got a lot of mail about the Interrogator’s Fallacy, but unfor-

tunately most of it merely confirmed my contention that it 

is easy to go wrong when considering conditional probabil-

ities. Most readers had trouble not with the main point, the 

probabilities associated with confessions, but with the 

preparatory example about the sexes of children. So let me 

first review the question, which, by the way, is standard 

both in textbooks on probability theory and in puzzle books, 

where you will find the same calculation that I carried out. 

We are told that the Smith family has exactly two children, 

and that one (or more) of them is a girl. What is the prob-

ability that both are girls? We assume boys and girls are 

equally likely, which is not quite the case in reality.

The big bone of contention was the way I split up 

the children by considering the order of birth. There 

are four types of two-child families: BB, BG, GB, GG. 

Each, I said, is equally likely. The information that at 

least one is G removes the first case, leaving BG, GB, 

GG. Of these, only one gives two girls. So the conditional 

probability that both are girls is 1/3. On the other 

hand, if we are told ‘the elder child is a girl’ then the condi-

tional probability that they are both girls is now 1/2. 

A lot of you disputed these conclusions. Some said that 
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I shouldn’t distinguish BG and GB: there are two cases, B/G 

and G/G, both equally likely. This is essentially the same 

mistake that Leibniz made about the odds of getting a 

double 6 with two dice–see Chapter 1. Instead of arguing 

theoretically, why don’t we just carry out an experiment?

Let’s toss two coins, and count the proportion of times we 

get two heads, two tails, or one of each. The coins simulate 

the sexes, with the right probabilities (1/2 each). Now, if 

those of you who think BG should not be distinguished from 

GB are right, then each of these cases should occur about 

one third of the time. OK, now you go away and do 100 

tosses. If I’m right, you should get about 25 cases of two 

heads, 25 of two tails, and 50 of both. If you’re right, you 

should get about 33 of each.

If you’re lazy, like me, you can simulate the tosses on a 

computer with a random number generator. I did it for one 

million simulated throws, and here’s what I got:

Two heads: 250,025

Two tails: 250,719

One of each: 499,256.

But don’t take my word for it: try it for yourself.

The other main argument was that whether or not we 

know that one child is G, then the other is equally likely to 

be B or G. That’s an interesting argument, and it’s instruc-

tive to see why it is wrong. Basically, the point is that when 

both children are girls, there is no unique notion of ‘the

other’. It only becomes unique if I specify which girl I am 

thinking about – for example, ‘the elder’ – which is exactly 
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what makes the two cases different. This destroys the 

assumed symmetry between Bs and Gs, and changes the 

conditional probabilities.

In fact, if you think about it, the statement ‘the elder child 

is a girl’ conveys more information than ‘at least one child is 

a girl’. (The first implies the second, but the second need not 

imply the first.) So it really ought not to be a surprise that 

the associated conditional probabilities are different.

Let me also report a development in the legal world, which 

happened after I wrote the original column. It suggests that 

the legal profession is not terribly numerate, and believes 

that juries are even less numerate. In a highly publicized 

rape case in the UK, a statistician serving as an expert 

witness explained Bayes’ theorem to the jury, in non-tech-

nical language, and the accused was found guilty. The 

defence lawyers then appealed the case on the grounds 

that jurors who did not wish to use Bayes’ theorem were not 

given an alternative. The appeal failed, but the judges at 

the Court of Appeal went on record with the view that intro-

ducing Bayes’ theorem, or anything similar, into a criminal 

trial ‘plunges the Jury into inappropriate and unnecessary 

realms of theory and complexity, deflecting them from their 

proper task’. A further appeal was ruled out, leaving the 

legal status of Bayes’ theorem in limbo.

While it is true that juries can be bamboozled by fancy 

mathematics, the decision has not stopped lawyers doing 

this, and occasionally high-profile cases still hinge on misuses 

of probability theory. But now juries seem to have been 
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deprived of entirely sensible mathematical principles that 

could help them detect such abuses, on the grounds that it’s 

all too difficult for the poor dears.
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At last, the cows! To find them, though, 

you have to solve a maze. Not the usual 

sort of maze, with hedges and dead ends 

and suchlike: a logical maze. You’ll need 

two pencils, and the route through the 

maze depends on which you choose. As 

an incentive, there’s a cow at the end.

13
Cows in the Maze



M
AZES FEATURE FREQUENTLY in recreational 
mathematics. They are more common in serious 
mathematics than you might imagine, too, because 
any mathematical investigation in effect requires 

you to fi nd a path through a logical maze of statements, with 
the path from each statement to the next being a valid logical 
deduction. ‘Where are the cows?’, a new kind of maze invented 
by Robert Abbott of Jupiter, Florida, is both a geometric maze 
and a logical one. It is taken from his book Supermazes.

Long-term afi cionados of the Mathematical Games column 
will remember Abbott as the inventor of the card game 
Eleusis, discussed by Martin Gardner in 1959 and again in 
1977. Its appeal relies on a logical twist: the aim of the game – 
for all players but one – is not to play according to the rules, 
but to guess what the rules are. The other player’s job is to 
invent them. Abbott’s ‘cows’ maze is also based on a logical 
twist, that of self-reference. Self-referential statements cause 
huge problems for logicians and philosophers – for instance 
the paradox associated with Epimenides, a Cretan who 
declared that all Cretans are liars, which reduces to:
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THIS STATEMENT IS FALSE.
Well, is it, or isn’t it? You’re in trouble either way. There are 
mutually referential statements like this, too:

THE NEXT SENTENCE IS TRUE.
THE PREVIOUS SENTENCE IS FALSE.

It’s a logical minefi eld.
One way out is to allow the truth of statements to slide on a 

continuous scale, with half-truths and three-tenths falsehoods; 
another is to allow the truth of a statement to vary dynamic-
ally. In the Mathematical Recreations column for February 
1993 I reported work of Gary Mar and Patrick Grim, who 
discovered that the dynamic approach leads to logical fractals 
and chaos. Another approach, however, is simply to wallow in 
the wonder of self-reference, and that’s what we’ll do here.

As Abbott writes: ‘Obviously self-reference is an impor-
tant area of study for logicians. But the really important 
question (well, it’s really important from my standpoint) is 
this: can self-reference be used to bring more confusion to 
mazes? The answer, I am happy to report, is Yes.’

‘Where are the cows?’ is shown in Figures 50a and 50b, 
spread across two pages because it’s too big to fi t on one. Not 
only is the text self-referential, but the rules for the maze 
change according to how you move. The text in the boxes is 
of three kinds: ordinary (roman), bold, and italic. (In the 
book they are black, red, and green, but we don’t have colour 
so I’ve translated everything. That doesn’t affect the abstract 
structure of the maze.) These font types do matter – for 
instance in boxes 1 and 2.

In order to thread this maze you need both hands, and it 
helps to hold a pencil or some other pointer in each to remind 
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fig 50a Where are the cows? Start with pencils in boxes 1 and 7,
choose a box, and obey the rules. Repeat, and get one pencil to the 
COW.
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fig 50b Where are the cows? (continued).



184 | CHAPTER 13

you where you are. Or you could use two counters and place 
them on the boxes.

To start, one pencil points to box 1 and the other to box 7.
The numbering on the boxes is not strictly sequential: that’s 
deliberate. Your objective is to make a series of moves so that 
at least one of the pencils ends up pointing to the box with a 
picture of a cow, which henceforth is referred to as COW. 
Abbott labelled this box GOAL and avoided cows, except in 
box 50, but this extra cow insisted on being allowed into the 
maze, and does no harm.

To make a single move, fi rst choose one of the pencils, then
follow the instructions in the box to which that pencil points. 
That’s it. No other choices need be made, except when you 
follow the instructions in box 55. I repeat: do not follow the 
instructions in a box until after you have chosen your pencil. ‘Feed-
back’ below shows what can happen if you forget this.

For example, suppose that from the starting position you 
choose the pencil pointing to box 7. This asks ‘Is the other 
pencil in a box whose number is an odd number?’ ( ‘In’ here 
means ‘pointing to’.) Now, the other pencil points to box 1,
and 1 is odd, so the answer is ‘yes’. So you must move the 
pencil pointing to box 7 along the path labelled YES, which 
leads it to box 26. The other pencil, pointing to box 1, stays 
there on this move.

Easy? Just wait. Suppose your next choice is the pencil 
pointing to box 26. ‘If you had chosen the other pencil, would 
it exit on a path marked ‘NO’?’ Hmmm. The other pencil was 
(and still is) pointing to box 1. If you’d chosen that, then the 
question would have been ‘Does the other pencil point to a 
box that has either bold text or italic text? ’ The ‘other pencil’ 
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in this question is the one that would have still been pointing 
to box 7, which does contain bold text. So the answer to the 
question in box 1 is ‘yes’, and the pencil would have exited 
along the YES path. All of which means that the answer to 
the question in box 26 is ‘no, it would not have exited along 
the NO path’. So the pencil on box 26 now moves along the 
NO exit, and ends up pointing to box 55.

Phew.
Most of the boxes ask questions, and your exit path 

depends upon the answer. Some boxes, however, work differ-
ently. Box 61 tells you to move both pencils, and the ‘move’ is 
not completed until you have done that. Box 55 has an exit 
marked LUGNUT instead of the usual ‘no’. This does make a 
difference – for example if your pencils point to 26 and 55
and you choose to move the one on 26.

The really drastic boxes are 60 and 65, which change the 
rules for threading the maze. Box 60 suspends the usual rule 
for exiting a box with bold text, replacing it by the rule 
‘always exit via YES’, which I shall call ‘rule 60’. Box 65 undoes 
rule 60 and restores the usual rules. These changes go into 
effect only when you choose the appropriate box – it is not 
enough merely to have a pencil pointing to one of them. In 
particular, it is possible to have one pencil pointing to box 60
and the other to box 65. Each box effectively tells you to 
ignore the other box – but that doesn’t cause self-referential 
problems because you have to choose which one to obey. 
You don’t obey both at once.

Some of the instructions may appear ambiguous, 
depending on how thinly you believe logical hairs should be 
split. Box 5 asks whether the other pencil points to text that 
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has the word ‘bold’ or ‘italic’. If, for example, the other pencil 
points to box 1, the answer is clearly ‘yes’; and if it points to 
box 15, the answer is ‘no’. But what if it also points to box 5?
Do the quotes round ‘bold’ mean that the text does not 
contain the word ‘bold’, but the word “bold” (with an extra 
set of quotes)? Abbott’s interpretation – which you will need 
to follow if you are to solve the maze – is that the quotes are 
irrelevant, and the answer is ‘yes’ when both pencils are in 
box 5.

Box 50 asks whether the other pencil points to text refer-
ring to cows. A fair question – except that the word ‘cows’ 
does not appear in any other box. But of course both pencils 
may point to box 50, in which case the answer is ‘yes’, so you 
can exit to COW – unless you want to argue that box 50 does 
not refer to cows as such: it refers to a reference to cows, which 
is quite a different matter. If that’s what you think, you’ll 
never solve the maze, so you should avoid philosophical 
nitpicking of this kind.

By the way the COW picture (which I’ve added) is not text
that refers to cows. But if your pencil points to COW, you’ve 
fi nished the maze anyway, so this issue is irrelevant.

You may by now have convinced yourself that the only 
possible way to solve the maze is to arrange for both pencils 
to point to box 50. That would be true in the absence of box 
60, which changes the rules. If you can get a pencil to box 50
when rule 60 is in force, then no matter where the other one 
is, you’re done. In fact there is one other way to make a legal 
exit from box 50 along the YES path. Can you fi nd it?

The weirdest situation that could occur has both pencils 
pointing to box 26. Now the question really is self-referential, 
and there is no clear way to answer it. So what happens? 
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Cunningly, Abbott has built his maze so that whenever both 
pencils point to box 26, rule 60 must be in force, so the text 
in box 26 is ignored! The same goes if both pencils are 
pointing to box 61.

What you really ought to do now is have a go, without any 
further help. If you fi nd that prospect daunting, there are 
some hints at the end, followed by a complete answer. You 
may also wish to read Feedback, which warns against 
common errors when interpreting the rules.

To stop you accidentally reading the hints now, I’m going 
to ask ‘is this really a maze, and if so, in what sense?’.

Traditionally, a maze is a network of fi xed paths, which 
may be made from yew bushes planted and cut to shape, or 
drawn on a sheet of paper. Moreover, you normally expect to 
move a single object through the maze, not two. With these 
restrictions there are some general mathematical methods 
that can be used to thread any maze, notably the ‘depth-fi rst 
search’ algorithm, which seeks to explore new territory 
whenever possible. To understand how it works, fi rst defi ne 
a ‘node’ to be any place in the maze where you have a choice 
between different paths – that is, a place where several paths 
meet. The procedure for depth-fi rst search is:

1. Begin at the START node.
2. If possible, visit any adjacent node that has not yet 

been visited, and keep doing this until you can’t.
3. In that case, backtrack along your previous path until 

you fi nd the fi rst node that is adjacent to an unvisited 
node, and visit that; then go back to stage 2.

4. If you have backtracked along any path, never use it 
again.
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If you keep doing this, you are guaranteed to visit every 
part of the maze, including the goal – unless the goal is not 
joined to the start by a path at all, in which case it’s a pretty 
silly maze.

At fi rst sight, this method doesn’t apply to ‘cows’, because 
of the rule changes, which alter the available pathways, and 
the choice of which pencil to move. However, that judge-
ment is a little superfi cial, because ‘cows’ is equivalent to a 
more complicated maze of standard type. To begin with, 
suspend the rule changes from boxes 60 and 65: I’ll explain 
how to deal with them later. First, list all the distinct ‘posi-
tions’, the pairs of numbers to which the pencils point. 
Consider COW to be a number too. For instance (1,7) repre-
sents the position when one pencil points to box 1 and the 
other to box 7. Note that (7,1) represents the same state since 
it doesn’t matter which pencil is which. These number pairs 
form the nodes of the new maze. Next, list all the possible 
legal moves – for example we can go from (1,7) to (1,26) or to 
(2,7) but not to anything else. These moves form the paths 
connecting nodes together. Now you have set up a conven-
tional maze, and any solution of that translates into a solu-
tion of the ‘cows’ maze. There is just one curious feature: the 
‘exit’ is now any node of the form (COW, ?) or (?, COW), 
because only one pencil has to get to COW to solve the where-
are-the-cows? maze.

The rule changes on boxes 60 and 65 are both controlled 
by rule 60. To deal with that, add an asterisk to positions for 
which rule 60 is in force. So (1,7) means that one pencil points 
to box 1, one to box 7, and rule 60 is not in force; whereas 
(40,50)* means that one pencil points to box 40, one to box 
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50, and rule 60 is in force. Again, all you have to do is list all 
the starred and unstarred pairs, work out the legal moves, 
and interpret the results as nodes in a maze and paths 
between them. Now when rule 60 comes into force you don’t 
alter the maze: you just move into that part of it whose nodes 
have asterisks. If you wanted to solve ‘cows’ by brute force, 
you could set all this up in a computer, do a depth fi rst search, 
and out would pop the answer.

What if you don’t want to resort to brute force? You have 
several strategies. One is to look for key features of the maze. 
For example, in order to reach the COW you must have a 
pencil pointing to box 50, and be in a situation for which the 
correct exit is YES. As stated earlier, there are three ways to 
do this. Box 40 has only one exit, YES if rule 60 is in force, 
NO if not. Another trick is to work backwards from a desired 
position to see whereabouts you could have come from. And 
by compiling enough partial paths through the maze you 
may be able to assemble them into a complete one.

HINTS

If you’ve tried all that and you’re still stuck, here are some 

hints.

•  To reach COW you must reach the position (50,50) in 

which both pencils point to box 50 and rule 60 is not in 
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force. The other two potential ways to finish cannot actu-

ally be realized.

•  To reach (50,50) you must first get to (35,35). You are 

then 18 steps away from COW.

•  To reach (35,35) you have to get to (61,75) and move the 

pencil pointing to box 61. Then both pencils can be moved 

so that they point to box 1. From there it’s easy to get to 

(35,35).

•  There are lots of ways to get from the start (1,7) to 

(61,75). All of them require you to activate the box 60 

rule, and then cancel it again at box 65.

ANSWER

In each pair, the underlined number is the pencil that you 

choose to move. An asterisk shows that rule 60 is in force.

 (1,7) (1,26) (2,26) (15,26) (26,40) (26,60) (55,60) (25,55)*

(7,55)* (26,55)* (55,61)* (15,61)* (40,61)* (61,65)* (61,75) 

(1,1) (1,9) (1,35) (9,35) (35,35) (35,40) (35,60) (25,35)*

(7,35)*, (26,35)* (35,61)* (1,35)* (9,35)* (2,35)*, (15,35)*,

(5,35)*, (5,40)*, (25,40)*, (25,65)* (25,75), (50,75), (50,50), 

COW.

 The part up to (61,75) takes 14 moves, which Abbott 

conjectures is the minimum. (Has anyone got a proof?)

Several alternatives are possible. The rest is the only 

possible solution, with the slight exception that (5,65)* can 

be substituted for (25,40)*.
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FEEDBACK

‘Cows in the maze’ was a source of considerable amusement 

and stimulation. Readers’ feedback caused me several 

moments of panic, with claims of shorter answers, better 

answers, errors in my (that is, Abbott’s) answer, and the like. 

Several claimed that I was wrong to state that any solution 

must involve getting to boxes (50,50) with rule 60 not in 

force. However, when I checked these attempted solutions 

I found that in every case there was an error.

 I’ll use the notation of the column, with an underline indi-

cating which pencil is to be moved, and an asterisk showing 

that rule 60 is in force. One reader’s attempt began (1,7) 

(1,26) (1,55) (1,15) (9,15) (35, 15) (35,40) . . . However, when 

moving from position (35,15) the instruction in box 15 reads 

‘Is the other pencil in a box whose number is evenly divisible 

by five?’ The answer here is ‘yes’, and that leads to (35, 5), 

not (35,40).

 A more interesting error occurred in a claimed solution 

(1,7) (2,7) (15,7) (15,26) (15,61) (40,61) (60,61) (25,61)*

(7,61)* (26,61)* (61,61)* (1,61)*, (2,61)*, (15,61)* (40,61)*

(65,61)* (75,1), (50,1), COW. Its author observed that ‘rule 60 

is not cancelled’ as a result of the manoeuvre from (65,61)*

to (75,1). There is a clear misunderstanding here. If you have 

arrived at (65,61)* and you choose to move pencil 61, then 

since rule 60 is in force, you must ignore the bold text – 

which is all of box 61. This leads you to (65,1) because rule 

60 tells you to use the ‘yes’ exit for the chosen pencil. In 

order to get to (75,1) you must obey the bold text in box 61, 
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which tells you to move both pencils – but you can’t do this 

when rule 60 is in force.

 Many misunderstandings arose from confusion about 

when the rule in box 60 goes into effect. Like all the other 

instructions, it takes effect only when you choose to move 

the pencil that is currently pointing to that box. It does not 

take effect as soon as one of the pencils arrives at box 60, 

because you may not choose that pencil on the next move. 

Abbott’s solution involves a move from (26,60) to (55,60) 

with rule 60 not in force. Because pencil 26 is chosen, the 

rule in box 60 is not activated at that time. My correspondent 

objected on the grounds that the instruction in box 60 

contains the word ‘now’ – but this term is relative. It refers 

to what you do once you have chosen to move the pencil in 

box 60: it does not apply until you have made that choice.

WEBSITES

GENERAL :

 http://en.wikipedia.org/wiki/Maze

ROBERT ABBOTT’S SITE :

 http://www.logicmazes.com/super.html

LOGIC MAZES:

 http://www.logicmazes.com/

http://www.logicmazes.com/super.html
http://www.logicmazes.com/
http://en.wikipedia.org/wiki/Maze
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ONLINE MAZE PUZZLES:

 http://www.clickmazes.com/

HISTORY OF MAZES:

 http://gwydir.demon.co.uk/jo/maze/

http://www.clickmazes.com/
http://gwydir.demon.co.uk/jo/maze/
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It ’s a puzzle at least 1200 years old:
move a chess knight around the board 

to visit every square. Despite a lot of 

mathematical head-scratching, there’s 

still a lot we don’t understand. Even 

rectangular boards retain a few 

mysteries. But some of the big 

questions have recently been solved.

14
Knight’s Tours on 

Rectangles



A
MONG THE OLD favourites of recreational mathematics 
are ‘knight’s tours’, in which the chess knight is 
required to move across boards of various shapes 
and sizes in such a manner that it visits every 

square once only. If it can return in one more move to its 
starting square, the tour is said to be closed. (Recall that the 
knight moves two squares parallel to a side of the board 
followed by one more square at right angles.) Figure 51 shows 
one of the classic knight’s tours on a chessboard, discovered 
by Abraham De Moivre some time before 1800. This one is not 
closed. For this purpose, the chessboard is merely an 8 ´ 8
grid of squares, and other shapes were soon investigated.

Knight’s tours have a lengthy history. The ninth century 
Kashmiri poet Rudrata wrote a Sanskrit poem Kavyalankara,
which encoded a knight’s tour on a 4 ´ 8 board (half a chess-
board) in its sequence of syllabic stress patterns. The explicit 
geometric problem seems to have originated with the English 
mathematician Brook Taylor around 1700, who asked it for 
an ordinary 8 ´ 8 chessboard; the fi rst solutions were sent to 
Taylor by De Montmort and De Moivre, and appeared in the 
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1803 edition of Jacques Ozanam’s Récréations Mathématiques et 
Physiques. The fi rst systematic method for fi nding knight’s 
tours was published by H.C. Warnsdorff in 1823. The problem 
has since been extended to boards of other shapes, to three-
dimensional ‘boards’, and even to infi nite boards.

The literature on knight’s tours is extensive but scattered. 
It includes such classics as Amusements in Mathematics by 
Henry Ernest Dudeney, Mathematical Recreations and Essays by 
Walter William Rouse Ball and Harold Scott MacDonald 
(‘Donald’) Coxeter, and Mathematical Recreations by Maurice 
Kraitchik. But in 1991 Allen J. Schwenk (West Michigan 
University, Kalamazoo) observed that the available modern 
literature seemed not to contain an answer to an entirely 
natural question: which rectangular boards support a closed 
knight’s tour? Various sources report that Schwenk’s ques-
tion was solved by Leonhard Euler or Alexandre-Theophile 
Vandermonde, but fail to indicate either the actual result or 
its proof. Of the sources listed, Kraitchik comes closest to 

fig 51 De Moivre’s tour.
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providing an answer, but assumes that one side of the 
rectangle has size 7 or less. Rouse Ball deals only with the 
8 ´ 8 case. Dudeney gives several puzzles that reduce to 
the 8 ´ 8 case, together with one that requires a tour over 
the surface of an 8 ´ 8 ´ 8 cube.

At any rate, Schwenk took the viewpoint that it is more 
fun to work out a solution for yourself than to delve into 
dusty archives. He developed a solution that can easily be 
explained to students of mathematics, and which illuminates 
a number of issues in ‘discrete mathematics’. Stripped of a 
few technical details it can be made accessible to almost 
anyone. Here I shall summarize Schwenk’s elegant analysis: 
for full details see Further Reading.

Mathematically, the knight’s tour problem reduces to 
fi nding a ‘Hamiltonian cycle’ in a graph. A graph is a collec-
tion of dots (nodes) joined by lines (edges); A Hamiltonian 
cycle is a closed path that visits each node exactly once. The 
graph associated to a given chessboard is obtained by placing 
a node at the centre of each square, and drawing edges 
between nodes that are one knight’s move distant (Figure 52). 
It is useful to think of the nodes as being black or white, cor-
responding to the usual pattern of colours on a chessboard. 

fig 52 A 3 ´ 5 chessboard and the corresponding knight’s-move 
graph.
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When the knight moves, it hops from a node of one colour 
to one of the opposite colour, so the nodes must be alter-
nately black and white round any Hamiltonian cycle. This in 
turn implies that the total number of nodes must be even. The 
3 ´ 5 board has 15 nodes, an odd number, so we have proved 
(without even trying) that no closed knight’s tour is possible 
on the 3 ´ 5 board. The same goes for any rectangular board 
of size m ´ n where m and n are both odd.

This kind of argument is known in mathematical circles 
as a parity proof, because it depends on the distinction 
between odd and even, and its application to knight’s tours is 
well known. Less well known is a more subtle parity proof, 
discovered by Solomon Golomb and in modifi ed form by 
Louis Pósa, demonstrating that there is no closed knight’s 
tour on any 4 ´ n board. Pósa’s version introduces a second 
colouring in which the top and bottom rows of the board are 
‘red’ and the two middle ones are ‘blue’ (Figure 53); Golomb’s 
proof combines both colourings.

Here I will describe the proof using Pósa’s approach. It is 
no longer true that blue nodes are joined only to red nodes, 
because some blue nodes are joined to blue ones. However, 
every red node is joined only to blue nodes. Thus any 
presumptive Hamiltonian cycle consists of single red nodes 

red

blue

blue

red

fig 53 Golomb’s and Pósa’s colouring method.
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separated by chains of blue nodes. But the numbers of red 
and blue nodes are the same, so red and blue nodes must 
alternate round the cycle. But the same is true of black and 
white nodes, using the more traditional colouring. So by 
starting at the top left-hand corner, we conclude that all red 
nodes are black and all blue nodes are white. Since the two 
colouring schemes are obviously different, this is absurd, so 
the presumed cycle cannot exist.

We can now state Schwenk’s beautiful characterization 
of those rectangular boards that support knight’s tours. An 
m ´ n chessboard (we here take m ´ n to avoid duplications) 
supports a knight’s tour unless

• m and n are both odd
• m = 1, 2, or 4
• m = 3 and n = 4, 6, or 8.

Let me sketch the proof. We have already disposed of the 
cases m, n both odd and m = 4. It is easy to see that when 
m = 1 or 2 there just isn’t room for the knight to get around 
the board. In fact, the top left-hand node has only one edge 
connected to it, so no closed cycle can pass through it. The 
3 ´ 4 case is taken care of by Pósa’s argument. For the 3 ´ 6
case, observe that removal of two nodes at the top and 
bottom of column three divides the graph into three discon-
nected pieces; however removal of two nodes form a 
Hamiltonian cycle always produces two disconnected 
pieces. The 3 ´ 8 case is more complicated and you should 
either consult Schwenk’s article or try it for yourself. (If 
you can fi nd a simple impossibility proof for the 3 ´ 8 case, 
let me know.)
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That completes the proof of impossibility in the desig-
nated cases. It remains to prove that tours exist on all other 
sizes of board. The key idea now is that a tour on an m ´ n
rectangle can always be extended to one on an m ´ (n + 4)
rectangle, provided that certain technical conditions about the 
existence of certain edges in the tour are satisfi ed (Figure 54). 
Moreover, those technical conditions remain valid for the 
tour on the larger rectangle, so the extension procedure can 
be continued indefi nitely. By symmetry, a tour on an m ´ n
rectangle can always be extended to one on an (m + 4) ´ n
rectangle.

So, for example, if we start with a tour on a 5 ´ 6 rectangle, 
we know we can also fi nd tours on rectangles of sizes 5 ´ 10,
5 ´ 14, 9 ´ 6 (hence 6 ´ 9), 9 ´ 10, 9 ´ 14, 13 ´ 6, 13 ´ 10, 13 ´ 14,
and so on. Each ‘initial size’ generates a whole family of sizes 
for which the existence of a knight’s tour is guaranteed. The 
fi nal step is to fi nd enough different initial sizes for this 
process to generate all the required sizes. It turns out that 
nine are enough: the boards of size 5 ´ 6, 5 ´ 8, 6 ´ 6, 6 ´ 7,
7 ´ 8, 6 ´ 8, 8 ´ 8, 3 ´ 10, and 3 ´ 12 (Figure 55). Golomb had 
previously solved the 10 ´ 3 case. Starting from these, and 

fig 54 Adding four columns to an existing tour (here the 6 ´ 6 tour 
on the left): cross-connect using the thick lines.
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fi g 55 The nine initial cases from which all others can be generated.
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the corresponding diagrams rotated through a right angle, 
and repeatedly adding multiples of four to each side, we can 
generate tours of all the possible sizes. The proof is 
complete.

FEEDBACK

Andy Campbell of West Hartford, CT recalled the long-

standing problem of a magic knight’s tour. This is a closed 

knight’s tour of the 8 ´ 8 board with the property that, if 

successive positions of the knight are numbered 1 through 

64, the numbers form a magic square. That is, all row sums, 

column sums, and diagonals are equal. Until recently (and 

when I wrote the column) the existence of such a tour had 

neither been proved nor disproved. However, several ‘near 

misses’ were known. A square that is magic except for its two 

diagonals is said to be semimagic, and in 1882 E. Francony 

discovered a semimagic knight’s tour (Figure 56). All rows 

and columns total 260, but the diagonals give 264 and 256.

 This ‘near miss’ stood the test of time, and for a good 

reason. In 2003, after a computation occupying more than 

two months of total processing time, it was proved that no 

such tour exists. The proof was carried out using ‘distrib-

uted computing’, meaning that volunteers could download 

the software and carry out an assigned part of the task on 
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their own computers in their own time. The software was 

written by Jean Meyrignac, and Günter Stertenbrink set up a 

website so that the volunteers could tackle their parts of 

the problem independently and send in their results. 

Between them they found 140 different semimagic tours, 

but after exhausting all of the possibilities, none was magic. 

See Websites below.

 Richard Ulmer, of Denver Colorado, noted that my 6 ´ 6 

tour is one of the ten tours (out of 9862 in total) to possess 

90-degree rotational symmetry (Figure 57). I had remarked 

that the smallest value of n for which there is a tour on the 

3 ´ n board is n = 10. He calculates that there are exactly 16 

tours on this board, 176 on the 3 ´ 11 board, 1536 on the 

3 ´ 12, and so on up to a staggering

 107,141,489,725,900,544

distinct tours on the 3 ´ 42 board. There are eight solutions 

on the 5 ´ 6 board, 44,202 on the 5 ´ 8, and 13,311,268 on 

the 5 ´ 10.

22 59 62 7 18 43 46 23

61 6 1 42 63 24 19 44

58 3 60 17 8 45 22 47

53 16 5 64 41 20 25 36

4 57 52 9 32 37 48 21

15 54 13 40 49 28 35 26

12 51 56 31 10 33 38 29

55 14 11 50 39 30 27 34

fig 56 Knight’s tour forming a magic square except for the 
diagonals.
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 He also has information about symmetries. For example, 

no knight’s tour can have diagonal flip symmetry. On a 

rectangle whose two sides are even numbers, no tour is 

symmetric about a major axis. When the vertical side is odd, 

a tour with horizontal flip symmetry is still impossible. 

However, flip-symmetric tours do exist on some boards 

(Figure 58). Specifically, they can occur when one side is odd 

and the other is twice an odd number. His current conjecture 

is that – perhaps with a few small exceptions – flip-symmetric 

tours exist on all such boards. A proof is currently lacking – 

so here’s another neat problem to get your teeth into.

WEBSITES

GENERAL :

 http://mathworld.wolfram.com/KnightsTour.html

 http://en.wikipedia.org/wiki/Knight’s_tour

fig 57 The ten rotationally symmetric tours on a 6 ´ 6
board.

http://mathworld.wolfram.com/KnightsTour.html
http://en.wikipedia.org/wiki/Knight%E2%80%99s_tour
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LINKS:

 http://www.velucchi.it/mathchess/knight.htm

HISTORY OF MAGIC KNIGHT’S TOURS:

 http://www.ktn.freeuk.com/1d.htm

NON-EXISTENCE OF MAGIC KNIGHT’S TOUR ON AN 8 ´ 8 

BOARD:

 http://magictour.free.fr/

  http://mathworld.wolfram.com/news/2003-08-06/magic

 tours/

MAGIC KNIGHT’S TOUR ON A 12 ´ 12 BOARD :

 http://www.gpj.connectfree.co.uk/gpjh.htm

fig 58 Bilaterally symmetric knight’s tour on a 6 ´ 5 board.

http://www.velucchi.it/mathchess/knight.htm
http://www.ktn.freeuk.com/1d.htm
http://www.gpj.connectfree.co.uk/gpjh.htm
http://magictour.free.fr/
http://mathworld.wolfram.com/news/2003-08-06/magictours/
http://mathworld.wolfram.com/news/2003-08-06/magictours/


All you need is a loop of string, and a 

friend to help out when two hands really 

aren’t enough. ‘Cat ’s cradle’ is just one 

of a huge range of string figures, found 

in many cultures. But what’s mathemat-

ical about that?

15
Cat’s Cradle Calculus 

Challenge



T
HIS CHAPTER IS about a piece of recreational 
mathematics that – as far as I knew when I fi rst 
wrote about it – doesn’t exist, and mostly still 
doesn’t, but should. What I asked for was a ‘calculus’ 

for traditional string fi gure games such as ‘cat’s cradle’ and its 
innumerable variants. I’ll follow the original column by 
setting this prospect up as a challenge and describing some 
of the phenomena that such a calculus should capture. The 
Feedback section brings the topic up to date and explains to 
what extent the challenge has been met.

String fi gures occur in many places, including literature. 
In Kurt Vonnegut’s science fi ction novel Cat’s Cradle, the world 
as we know it comes to an end when all the seas freeze over 
into ice-nine, a hypothetical variant of normal ice that is solid 
at room temperature. Ice-nine is the creation of Dr. Felix 
Hoenikker, who bequeathes a tiny chip of the substance to 
his three children Angela, Frank, and Newt. Felix is an inad-
equate father – which, in the end, is why that chip of ice-nine 
escapes and freezes the oceans, the rivers, and most living 
creatures. In a couple of places, Vonnegut alludes to the 
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book’s title. The closest that little Newt ever sees his father 
come to playing a game is when Felix borrows a length of 
string and makes a cat’s cradle out of it. ‘He all of a sudden 
came out of his study and did something he’d never done 
before,’ Newt relates. ‘He tried to play with me.’ But the 
attempt was a dismal failure, and much later in the book, 
Newt explains why:

‘For maybe a hundred thousand years or more, grownups 
have been waving tangles of string in their children’s 
faces . . . No wonder kids grow up crazy. A cat’s cradle is 
nothing but a bunch of X’s between somebody’s hands, and 
little kids look and look and look at all those X’s . . .’

‘And?’
‘No damn cat, and no damn cradle.’
Vonnegut’s story needs a cynic, and Newt fi ts the bill – 

but his diagnosis of the cause of Newt’s childhood tribula-
tions is probably not widely applicable. String fi gures, of 
which cat’s cradle is the best-known example, have been 
popular for centuries in many cultures, and the children 
enjoy them just as much as the adults. To be sure, you need 
a bit of imagination to see the alleged cat. The cradle is rather 
more credible.

The basic cat’s cradle game is well known, but not every-
body realizes that the complete cat’s cradle sequence involves 
eight separate fi gures. Moreover, innumerable other fi gures 
can be constructed in the same general manner, with a simple 
loop of string held between the fi ngers of two hands, draped 
and twisted round them. Although string fi gures lack explicit 
mathematical features, they are the kind of thing that should 
interest any recreational mathematician, with their curious 
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mixture of geometry, topology, and combinatorics. They 
illustrate the extent to which the topology of a loop of string 
fails to capture its richer geometric properties, such as shape. 
To a topologist, all the forms that can be made by twisting 
and tangling the original loop are, in effect, exactly the same 
as that loop. But to a geometer, they are not – and the range 
of possible shapes is beautiful and surprising.

Maybe Newt Hoenikker was a topologist.
I think that it ought to be possible to devise a ‘calculus’ of 

cat’s cradle shapes, a kind of algebra describing how to get 
from the initial uninteresting loop to more signifi cant shapes, 
by making sequences of standard ‘moves’ of various kinds. 
The subject known as knot theory – especially that part of it 
called ‘braids’ – proceeds in much this manner. Its aim, 
however, is to capture when two loops are topologically the 
same, whereas the aim of cat’s cradle calculus should be to 
capture when two topologically equivalent loops are geomet-
rically different.

To follow the instructions below, you need a piece of soft, 
smooth string about three feet (one metre) long, with its ends 
tied to form a closed loop. The full cat’s cradle sequence is 
shown in Figure 59. It requires two players, Angela and Bill, 
who take turns to remove the loop of string from each other’s 
hands. First, Angela sets up the cradle (Figure 59a,b). There is 
one basic movement in the sequence, used at almost every 
step, and this is the fi rst place it arises. Bill stands on (say) 
Angela’s right. Looking down into the fi gure, he can see two 
crossings: he picks these up, one in each hand, and pulls 
them apart (Figure 59c). Then he draws the strings away from 
the centre of the fi gure, over the outside edge, down, inwards, 
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and back up through the gap in the centre (Figure 59d). 
As Bill draws his hands apart and separates his thumb and 
index fi nger, Angela loosens the loops from her fi ngers and 
lets them slip off. Now Bill can take the new fi gure onto his 
hands (Figure 59e). This second stage is called the soldier’s bed.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

fig 59 Cat’s cradle.
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If Angela now repeats exactly the same moves, starting from 
this second fi gure, she creates the third (Figure 59f ) known 
as the candles.

To get from the candles to the fourth fi gure requires a new 
movement. Bill fi rst draws aside the two inner strings with 
his little fi ngers, and passes the thumb and index fi nger into 
the centre of the fi gure from below. This is similar to the 
basic move, but no crossed strings are carried. Finally Bill 
opens up his thumb and forefi nger, and grips the loops round 
his little fi ngers by bending the fi ngers over. The result is 
Figure 59g, the manger. As a mathematical aside, the manger 
is just like the cat’s cradle, but upside down, so the entire 
sequence could now be followed in reverse. The traditional 
route, however, takes unexpected turnings.

From the manger, another repetition of the basic move, 
also performed upside down (take the crossings from below 
rather than above), leads – as you might expect – to the 
soldier’s bed upside down (Figure 59h). Traditionally this 
fi fth shape is called the diamonds. Yet another repetition of 
the basic move, this time the usual way up, produces the cat’s 
eye (Figure 59i). Picking up slightly differently (Figure 59j) 
and drawing the hands back without swooping back under-
neath to the centre, leads to the fi sh-on-a-dish (Figure 59k).

The fi nal shape is more elusive. Bill uses his little fi ngers to 
separate the central strings (Figure 59l) and then picks up the 
crossings in the usual manner. Then he turns his thumbs and 
index fi ngers inwards and upwards, to get the eighth shape, 
the clock (Figure 59m). I have no idea why the shape has this 
name, and on this occasion I sympathize somewhat with 
Newt.
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If you use different moves, you can change the order of the 
sequence – for instance by going straight from the cradle to 
the candles, or from the soldier’s bed to the cat’s eye. An 
effective Cat’s Cradle calculus ought to be able to handle all 
such variations.

The sequence just described is common to many cultures, 
but the names vary considerably, and include:

• Cradle: hearse-cover, water
• Soldier’s bed: chessboard, mountain cat, church 

window, fi shpond
• Candles: chopsticks, clog soles, musical instrument, 

mirror
• Manger: upset cradle
• Diamonds: squares
• Cat’s eye: cow’s eyeball, horse’s eye, diamonds
• Fish-in-a-dish: musical instrument, rice grinder
• Clock: considering how little this resembles a clock, 

it’s curious that it alone seems to have no other 
name.

As an example of the many alternatives that can be formed, 
I’ll give instructions for a shape that can be made by a single 
player, using a more elaborate series of moves. This fi gure, 
Indian diamonds, starts in a very similar way to cat’s cradle, 
but not quite (Figure 60). Begin with the standard loop 
(Figure 60a), then pick up the string that runs across the left 
palm with the right index fi nger (Figure 60b), and repeat 
with the other hand (Figure 60c). Next, slip the loop off your 
thumbs by bending them in towards each other and gently 
but steadily pulling your hands apart. Twist your hands so 
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that your palms face outwards. Pass your thumbs forwards 
under all the strings, hook them over the little-fi nger string, 
and twist your hands back drawing the little-fi nger string 
towards you (Figure 60d). This motion is more natural than 
it sounds, and if you try it, you’ll fi nd that the string that you 
pick up is the ‘obvious’ one for this method.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m)

fig 60 Indian diamonds.
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Figure 60e shows what the strings now look like, and what 
to do next. Pass your thumbs over the top of the string imme-
diately in front of them, then underneath the next strings to 
pick them up with the backs of the thumbs, to get Figure 60f.
Next, slip the loops off your little fi ngers by bending the 
fi ngers and pulling your hands gently apart. The result 
(Figure 60g) is rather tangled, but from here on out it gets 
simpler. Figure 60h shows the next move: bend your little 
fi ngers towards you, turning the hands over if you wish, and 
bend the fi ngers over the fi rst string they meet (from the 
index fi ngers) and under the next string after that (from the 
thumbs). Now straighten the little fi ngers.

At this stage there are two loops on each thumb, and you 
should free these, just as before. After this the string looks a 
lot simpler (Figure 60i) except for a tangled knot in the 
middle, which I won’t bother to illustrate since it’s irrelevant. 
Pass the thumb over the two strings that make a loop at the 
index fi nger, then under the nearer string of the little-fi nger 
loop, and back to where you started from. You may need to 
twist your hands a bit here.

The string should look like Figure 60j. The next step is 
unusual. Using the fi ngers of the right hand, pick up the string 
at the point marked ‘a’ and lift it over the left thumb, a fraction 
of an inch away. Then repeat on the other hand. Be careful to 
pick up the string above the string from the little fi nger that 
crosses it. If you’ve done this correctly, you’ll end up with Figure 
60k – again with the details of the knotty middle omitted.

Almost there. The fi nal step is easier to do than to describe. 
Turn your thumbs to point towards each other, pass them 
through the holes marked ‘h’ in Figure 60k, below, and bring 
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them up on the near side. Then point your index fi nger 
into the holes marked ‘k’ in Figure 60l. Carefully slip the 
string off the little fi ngers, and turn your palms smoothly 
outwards to stretch the string out. You should, after a bit 
of practice, get Figure 60m – Indian diamonds in all their 
glory.

These two examples have merely scratched the surface of 
string fi gures. If you want to know more, take a look at Caro-
line Jayne’s String Figures and How to Make Them.

FEEDBACK

Mark A. Sherman, editor of the Bulletin of the International 

String Figure Association, sent me several copies of his 

journal and its predecessor containing articles that head in 

the right direction. Among them are a special issue of 

Bulletin of the String Figures Association by Tom Storer and 

articles in the Bulletin of the International String Figure 

Association by Mark A. Sherman, Joseph D’Antoni, Yukio 

Shishido, and James R. Murphy. The full references are listed 

in Further Reading.

 The most mathematical response was from Martin Probert, 

who has posted a series of relevant articles on the Internet, 

listed below. His results include a method for analysing 
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string figures that resemble each other except for differ-

ences in which string overlaps which at a crossing, and some 

ideas about ‘motifs’ – common sub-patterns in string figures. 

There are also a number of new string figures, such as the 

Jabberwock and Alice in Wonderland, both invented in 

2002.

WEBSITES

GENERAL :

 http://www.alysion.org/string.htm

 http://en.wikipedia.org/wiki/String_game

 http://en.wikipedia.org/wiki/Cat%27s_cradle

INTERNATIONAL STRING FIGURE ASSOCIATION :

 http://www.isfa.org/

MARTIN PROBERT’S WEBSITE :

 http://website.lineone.net/~m.p/sf/menu.html

http://www.alysion.org/string.htm
http://www.isfa.org/
http://en.wikipedia.org/wiki/String_game
http://en.wikipedia.org/wiki/Cat%27s_cradle
http://website.lineone.net/~m.p/sf/menu.html
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Topology is rubber-sheet geometry, but 

most mathematicians prefer the tradi-

tional tools of blackboard and chalk – 

when they’re not using a supercomputer. 

Alan Bennett has a different approach. 

He likes to make things from glass. He 

even proves theorems that way.

16
Glass Klein Bottles



A
DOZEN OR MORE years ago, Alan Bennett, a 
glassblower from Bedford, became intrigued by 
the mysterious shapes that arise in topology – 
Möbius bands, Klein bottles, and the like – and he 

came across a curious puzzle. A mathematician would have 
tried to solve it by doing calculations, an artist would have 
drawn pictures. Alan reached for the materials most familiar 
to him, and solved it in glass. His series of remarkable glass 
objects, in effect a research project frozen in glass, became a 
permanent exhibit at the Science Museum in London.

Recall that topologists study properties of shapes that 
remain unchanged when those shapes are stretched, twisted, 
or otherwise distorted – the sole proviso being that the deform-
ation must be continuous, so that the shape is not perman-
ently torn or cut. However, there is one further possibility 
that I didn’t mention in previous discussions of topology 
because it wasn’t relevant then. It is also permissible to cut 
the shape temporarily, provided it is eventually joined back 
together again so that points that were originally adjacent 
across the cut end up adjacent again. This convention – an 
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informal interpretation of the technical concept of ‘continu-
ous transformation’, not just the ad hoc proviso that it may 
seem – allows mathematicians to treat the shape in its own 
right and ignore any surrounding space. Topological proper-
ties include connectivity – is the shape in one piece, or 
several? Does it have holes in it? If so, what kinds of holes?

Knots and links are trickier. They have topological prop-
erties too, but now the surrounding space is explicitly taken 
into account when formulating the mathematical concepts. 
A closed loop with a knot in it is topologically equivalent 
to a closed loop without a knot – all you have to do is cut 
the loop, untie the knot, and rejoin the cut. However, 
the knotted loop sits inside space in a different way from the 
unknotted loop. There is no way to distort the entire space
topologically so that the knotted loop becomes unknotted, 
even when cutting and pasting is allowed – because you 
must cut and paste the entire space, not just the loop.

Topology is a relative newcomer to mathematics. After 
some early prehistory, it fi rst got off the ground as a subject 
in its own right about a hundred years ago, when the great 
French mathematician Henri Poincaré introduced some of 
the basic algebraic techniques. Its tentacles now extend into 
every area of modern mathematics, both pure and applied. It 
has, for example, become indispensable in celestial mech-
anics, the study of many bodies moving under gravity, where 
it describes the possible kinds of motion and classifi es differ-
ent kinds of collision.

The most familiar topological shapes appear at fi rst sight 
to be little more than curious toys, but their implications run 
deep. There is the Möbius band, which you can make by 
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taking a long strip of paper and gluing its ends together after 
giving the strip a twist. Throughout this chapter, ‘twist’ 
means ‘turn through 180°’ – sometimes this operation is 
known as a half-twist. The Möbius band is the simplest 
surface that has only one side. If two painters tried to paint a 
Möbius band red on one side and blue on the other, they 
would eventually run into each other. If they tried the same 
game on the hollow surface of a sphere, they wouldn’t have 
that problem. The sphere would end up with one red surface – 
the outside, say – and a blue surface inside. A sphere is 
two-sided, a Möbius band isn’t. Get used to it.

If you give the strip several twists, you get variations on 
the Möbius band. To a topologist, the important distinction 
is between an odd number of twists, which leads to a one-
sided surface, and an even number, which leads to a two-
sided surface. All odd numbers of twists yield surfaces that, 
intrinsically, are topologically the same as a Möbius band. To 
see why, just cut the strip, unwind all twists save one, and 
join the cut up again. Because you removed an even number 
of twists, gluing together the cut edges rejoins points that 
started out near each other. This does not happen with an 
odd number of twists: one side of the cut is fl ipped end-
to-end compared to the other.

For similar reasons, all bands made with an even number 
of twists are topologically the same as an ordinary cylin-
drical strip, which has no twists. However, the exact number 
of twists also has topological signifi cance, because it affects 
how the band sits in its surrounding space. There are two 
different questions here, one about the intrinsic geometry of 
the band, the other about a band embedded in space. The fi rst 
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depends only on the parity (odd or even) of the number of 
twists; the second depends on the exact number.

The Möbius band has a boundary – those parts of the edge 
of the strip that don’t get glued together. A sphere has no 
boundary. Can a one-sided surface have no boundary? It 
turns out that the answer is ‘yes’, a famous example being the 
Klein bottle (Figure 61). In this picture the ‘spout’ or ‘neck’ 
has been bent round, passed through the bottle’s surface, and 
joined to the main bottle from the inside. In this representa-
tion, the Klein bottle meets itself in a small circular curve. 
The topologist ignores that intersection when thinking about 
an ideal Klein bottle, because it is an artefact that arises when 
the surrounding space is three-dimensional. No such surface 
can exist in three-dimensional space without crossing 
through itself. This is no problem to topologists, who can 
imagine surfaces in space of higher dimensions, or even in 
no surrounding space whatsoever, but it is an unavoidable 
obstacle for model-makers and glass-blowers.

fig 61 Klein bottle in (a) mathematics and (b) glass.
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Imagine trying to paint the Klein bottle. You start on the 
‘outside’ of the large bulbous part, and work your way down 
the narrowing neck. When you cross the self-intersection, 
you have to pretend temporarily that it’s not there, so you 
continue to follow the neck, which is now inside the bulb. As 
the neck opens up, to rejoin the bulb, you fi nd that you are 
now painting the inside of the bulb! What appear to be the 
inside and outside of the Klein bottle connect together seam-
lessly: it is indeed one-sided.

Alan had heard that if you cut a Klein bottle along a suit-
able curve, then it falls apart into two Möbius bands, and he 
verifi ed this in glass (Figure 62). If you do this with a Klein 
bottle that sits in ordinary space like Figure 61, those bands 
have a single twist. He wondered what sort of shape you had 
to cut up to get two three-twist Möbius bands. So he made a 
lot of different shapes in glass, cut them up, and saw what he 

fig 62 Cutting a Klein bottle into two Möbius bands (a) mathemat-
ically (b) in glass.
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got. As he writes: ‘I always like to solve problems in a prac-
tical way. I fi nd that if enough variations to the basic concept 
are made, or collected, the most logical or obvious solution 
to the problem usually becomes apparent. In this case, 
adhering to as few limiting principles as possible, I started 
designing and making all sorts of single surface vessels. The 
basic Klein bottle can easily be stretched and distorted to 
form numerous shapes, but I wanted to go beyond this, and 
create new concepts. As far as I know my designs are all new; 
even so, they are traceable back to Klein’s original bottle.’

Since he was looking for three-twist Möbius bands, Alan 
tried all sorts of variations on the number three – such as 
bottles with three necks (Figure 63), and, amazingly, sets of 
three bottles nested inside each other (Figure 64). He stacked 
three bottles on top of each other, and linked sets of three 
such stacks together. He thought about what would happen 
when they were cut up; he even cut them up with a diamond 

fig 63 Klein bottle with three necks.
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saw, to check. He started to ‘see’, in his mind’s eye, the lines 
along which these shapes should be cut to make Möbius 
bands. But the three-twist bands proved elusive. The break-
through was a very curious bottle whose neck looped round 
twice, forming three self-intersections (Figure 65). He named 
this the ‘Ouslam Vessel’ after the mythical bird that goes 
round in ever decreasing circles until it vanishes up its own 
rear end. ‘Oozalum’ is another common spelling.

If the Ouslam Vessel is sliced vertically, through its plane of 
left–right symmetry – the plane of the paper in the drawing – 
then it falls apart into two three-twist Möbius bands. Problem 
solved! But that was only the beginning. Like any mathemat-
ician, Alan was now after bigger game. What about fi ve-twist 

fig 64 Nested set of three Klein bottles.
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fig 65 The ‘Ouslam Vessel’, here shown (a) in cross-section, whose 
neck loops round twice. If sliced as in (b) it falls apart into two three-
twist Möbius bands.

bands? Seven-twist bands? Nineteen-twist bands! What was 
the general principle? Generalizing Figure 65 by adding in an 
extra loop, he quickly saw that fi ve-twist bands would result. 
Every extra loop puts in two more twists.

Then he simplifi ed the design, making it more robust, to 
produce spiral Klein bottles like Figure 66. This one cuts into 
two seven-twist bands – and every spiral turn you add puts 
in two more twists.

fig 66 Spiral Klein bottle cuts into two seven-twist bands.
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Having now seen the signifi cance of spiral turns, Alan 
realized that he could go back to the original Klein bottle by 
‘untwisting’ the spiral. The line along which the spiral Klein 
bottle should be cut would deform too. As the spiral neck of 
the bottle untwisted, the cut line twisted up. So, if you cut an 
ordinary Klein bottle along a spiral curve (Figure 67), then 
you can get as many twists as you want – in this case, nine.

Now for a fi nal curiosity. The original motivation for the 
work was the possibility of cutting a Klein bottle to get two 
one-twist Möbius bands. But you can also cut a Klein bottle 
along a different curve, to get just one Möbius band. I’ll leave 
you to work out how: answer below.

fig 67 Cutting an ordinary Klein bottle along a spiral curve.
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FEEDBACK

Robert L. Henrickson of Billings, Montana provided some 

fascinating information about similar bottles in pottery. The

Life, The Times, and the Art of Branson Graves Stevenson

by Herbert C. Anderson Jr (Jahner Publishing 1979) reports 

that ‘In response to a challenge from his mathematician son, 

Maynard, Branson made his first Klein bottle using the 

topology suggestion of the German mathematician, Klein. 

He failed in his first try, until the famous English potter, 

Wedgewood, came to Branson in a dream and showed him 

how to make the Klein bottle. Branson followed Wedge-

wood’s instructions and succeeded!’ This was around fifty 

years ago. The book includes a picture of the pottery Klein 

bottle. It has a spout, which is not essential to the topology. 

Branson saw this as evidence for the power of the subcon-

scious mind. His study of claywork and pottery led to the 

formation of the Archie Bray Foundation in Helena, 

Montana.

ANSWER

Figure 68 shows Bennett’s method for cutting a Klein bottle 

along a different curve to get just one Möbius band.
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WEBSITES

GENERAL :

  http://en.wikipedia.org/wiki/Klein_bottle

  http://plus.maths.org/issue26/features/mathart/index-

 gifd.html

 http://mathworld.wolfram.com/KleinBottle.html

 http://www.youtube.com/watch?v=E8rifKlq5hc

GLASS KLEIN BOTTLE :

 http://www.kleinbottle.com/meter_tall_klein_bottle.html

 http://www.kleinbottle.com/

  http://www.sciencemuseum.org.uk/objects/mathematics/

 1996-545.aspx

fig 68 How Alan Bennett cuts a Klein bottle to form a single 
Möbius band.
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Art and science often seem poles apart, 

but every so often an artist manages to 

embody significant scientific ideas in a 

painting, dance, or sculpture. Jonathan 

Callan’s curious cratered landscapes are 

based on the physical properties of 

cement. But mathematics is not 

far away.

17
Cementing Relationships



T
HE PRESTIGIOUS SCIENTIFIC journal Nature – in which 
Francis Crick and James Watson published their 
epic discovery of the double-helix structure of 
DNA, for instance – manages to combine high-

powered scientifi c research with a journalistic streak. For a 
time, one of its regular columns was Art and Science, written 
by art historian Martin Kemp. The column of 11 December 
1997 described the remarkable landscapes of a London artist 
called Jonathan Callan. Conventional landscapes are paint-
ings of natural scenery, but Callan’s works are sculptures. 
They are landscapes with a difference, landscapes unlike 
anything seen on Earth. They are three-dimensional forms 
created by pouring cement onto a board drilled with a 
random set of holes (Figure 69).

Kemp, who is an Emeritus Research Professor in the 
History of Art Department at Oxford University, relates 
Callan’s sculptures to work in complexity theory about sand-
piles and ‘self-organized criticality’. In a letter to the editor, 
Adrian Webster of the Royal Observatory, Edinburgh, 
pointed out that the curious geometry of Callan’s landscapes 
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can be understood using a much more classical branch of 
mathematics, the theory of Voronoï cells. He also explained 
how the Voronoï cells in Callan’s landscapes illustrate one of 
the big discoveries of recent astronomy, the foam-like distri-
bution of matter in the Universe.

If ever there was an example of the unity of mathematics, 
art, and science, this has to be it.

Kemp points out that artists have always relied on pro-
cesses from physics and chemistry in their work – the frac-
ture of rock in classical sculpture, the properties of pigments, 
even the fl ow of hot metal when casting bronze. However, the 
traditional artist’s technique has been to control these proc-
esses so that the media behave in desired ways. Callan is one 
of a much smaller band of modern artists who allow the 
physical and chemical processes of their media to determine 
the main artistic features of their work – ‘free-style evolution 
of morphology’, as Kemp puts it. The particular series of 
works that excited the attention of Nature begins with surfaces 
drilled with a random series of holes. The artist then sieves 

fig 69 One of Jonathan Callan’s landscapes.
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cement powder evenly over the surface. Some cement trickles 
away through the holes, but further from the holes the 
powder piles up to form fantastic peaks, surrounding crater-
like depressions centred on the holes.

Callan described the results like this: ‘A de-natured geolog-
ical principle, of sedimentary deposits, the silting of a river 
estuary . . . a geography that seems both eminently “natural” 
and highly “artifi cial” – the Alps brand new.’ Kemp remarks 
that certain general principles seem to govern Callan’s 
fantastic landscapes – for instance, the highest peaks occur 
in regions furthest removed from holes.

It is these regularities that Webster’s work explains.
Civil engineers often have to work with soil – for example, 

their buildings usually rest on it. Roads that pass through 
cuttings in soft soil also require an understanding of how 
granular materials such as soil, sand, or cement pile up. The 
simplest and most important feature is the existence of a 
critical angle. Depending on the nature of the granular ma-
terial, there is a steepest slope that it can sustain without col-
lapsing. This slope runs at a constant angle, the critical angle. 
If you keep piling sand higher and higher, say by pouring it 
in a thin stream from a point above a fi xed location, it will 
increase its angle of slope until it reaches this critical angle. 
Any extra soil will then trickle down the resulting pile, either 
causing a tiny avalanche or a big one, to restore the critical 
angle. The resulting ‘steady-state’ shape, in this simplest 
model, is a cone whose sides slope at exactly the critical angle 
(Figure 70a).

Complexity theorists study the process by which the slope 
attains this shape, and the nature of the avalanches, big or 
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small, that accompany its growth. The Danish physicist Per 
Bak coined the term ‘self-organized criticality’ for such pro-
cesses, and he has suggested that they model many important 
features of the natural world, especially evolution (where the 
avalanches involve not grains of soil, but entire species, and 
the piles are in an imaginary space of potential organisms). A 
real sand-pile is more complex than either the engineer’s cone 
or Bak’s avalanche, but it is useful as a metaphor.

Webster begins by noting that in Callan’s art the structure 
of cement powder round a hole is complementary to the 
engineer’s conical pile. Consider a horizontal board with just 
one hole. Away from the hole, cement rises in every direc-
tion at the critical angle, creating a conical depression whose 
tip points downwards and rests at the centre of the hole 
(Figure 70b). These inverted cones are the craters and 
canyons that form Callan’s striking landscapes. In a simple 
model, they also slope at the critical angle.

But what of the geometry when there are several holes? 
The key point now is that any cascading cement powder that 
rolls down a slope and falls out through a hole will fall out 

critical angle

critical angle

(b)(a)

fig 70 (a) Conical sand-pile. (b) Inverted conical crater.
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through the hole that is nearest to its initial point of impact. 
This is a consequence of the slopes all being at the same 
angle. It is therefore possible to predict where the boundaries 
between the conical craters will occur. Divide the board into 
regions surrounding each hole, in such a manner that each 
region consists of precisely those points that are closer to the 
chosen hole than they are to any other hole. The hole’s ‘sphere 
of infl uence’, so to speak – except that it is not a sphere, but a 
polygon. Provided the board is horizontal, the boundaries 
between these regions are directly beneath the common 
boundaries of adjacent craters.

Another way to describe these regions is to choose any 
pair of holes and draw a line between them, from centre to 
centre. Cut it in half, and from that point draw the line at 
right angles to it. That is, draw the perpendicular bisector of 
the two holes, considered as points located at their centres. 
Repeat this procedure for every pair of holes to get a network 
of lines. For each hole, fi nd the smallest convex region that is 
bounded by segments of this network and contains that hole 
(Figure 71). This region is the Voronoï cell corresponding to 
the chosen hole. Each hole is surrounded by a unique Voronoï 
cell, and the Voronoï cells together tile the plane.

George Voronoï was a Russian mathematician who worked 
on number theory and multidimensional tilings around 
1900, and his concept was taken up by the early crystallog-
raphers. Voronoï cells go by several other names – Dirichlet 
domains, Brillouin zones, and Wigner–Seitz cells – because 
they have been rediscovered independently in many contexts. 
The fi rst person to defi ne and study them in a technical sense 
seems to have been the mathematician Peter Lejeune-Dirichlet, 
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who applied them to number theory in 1850, but René 
Descartes used them informally in 1644. In 1854 the British 
doctor John Snow used a Voronoï diagram in his famous 
study of cholera, to demonstrate that most of the victims 
lived nearer to the water pump in Broad Street than to any 
other pump – suggesting that the water from that pump was 
infected.

The geometry of Voronoï cells, combined with the critical 
angle for a sand-pile, imply that Callan’s craters rise in 
inverted cones at the same critical angle. And they meet 
above the edges of the Voronoï cells defi ned by his system of 
drilled holes. One pleasant consequence of this geometry is 
that when two slopes meet, they come together along a well-
defi ned ridge, with no sharp discontinuity. Another feature, 
less obvious, can also be deduced: the shape of these ridges, 
where one crater merges into its neighbour. In the abstract, 
two inverted cones rise at identical angles, so they must meet 

fig 71 Construction of Voronoï cells.
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vertically above the perpendicular bisector of the line that 
joins their vertices. That is, the ridge lies directly above the 
Voronoï boundary. What curve do you get if you cut a cone 
with a vertical plane? The ancient Greeks knew the answer: 
a hyperbola (Figure 72). This fact helps to explain the rather 
jagged nature of Callan’s landscapes, for where three Voronoï 
cells meet, we observe the intersection of three steeply rising 
hyperbolas.

What of the connection with galactic clusters? Astron-
omers have discovered that matter in the Universe is not uni-
formly spread out, but clumpy, forming loosely knit skeins 
surrounding huge voids (Figure 73). Theoretical models of 
this process involve Voronoï cells in three-dimensional 
space, with Callan’s holes replaced by point masses. In the 
plane, the perpendicular bisector of a pair of points is a line, 
but in space it is a plane. Draw these bisecting planes for 
all pairs of points, and let the Voronoï cell of a given point 
be the smallest convex region that surrounds it and is 
bounded by portions of these planes. Now the Voronoï cell is 
a polyhedron. In the popular ‘Voronoï foam’ model of the 
Universe’s distribution of matter, galaxies occur only on the 
boundaries between neighbouring Voronoï cells.

fig 72 Callan’s craters meet along hyperbolic ridges.
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There is an analogy – loose rather than strict, but still 
 illuminating – with the distribution of cement powder in 
Callan’s landscapes. There, the cement piles up highest along 
the Voronoï boundaries. The analogous property in space 
would be that matter is densest along those boundaries. 
Because of the force of gravity, denser regions of matter draw 
nearby matter towards them, which concentrates matter more 
and more densely along the Voronoï boundaries. If Callan’s 
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fig 73 Distribution of galactic clusters, with large voids.
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cement exerted a gravitational force that could overcome 
frictional resistance between grains, its constituent grains 
would similarly migrate onto the polygonal foam-like 
network determined by the Voronoï boundaries. So this one 
simple idea encapsulates some arresting art, some elegant 
mathematics, and some deep physics about the distribution 
of matter in the Universe.

FEEDBACK

Originally I described Callan’s landscapes as unlike anything 

found on ‘any known world’. I’ve edited that remark out, 

because the landscape sculptures bear an uncanny resem-

blance to some of NASA’s images of the surface of Hyperion 

(Figure 74). Hyperion is one of Saturn’s many satellites, of 

which 61 have been detected as I write, with 53 confirmed 

and given official names. Is it possible that Hyperion is a 

dust-covered sponge, and the dust has slipped down cavi-

ties in the underlying rock? The satellite’s low gravity would 

make the critical angle very steep, which seems to be 

consistent with the image.
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fig 74 Hyperion (photo courtesy of NASA).
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The usual topological view of knots 

doesn’t capture some of their more 

practical aspects, such as the thickness 

of the string or the existence of friction. 

Bearing these features in mind leads to 

the beginnings of a new theory, based 

on knotting real ropes together.

18
Knotting Ventured, 

Knotting Gained



I
N LESS THAN a century the mathematics of knots has 
gone from a minor curiosity to a major area of research 
that lies at the frontiers of the mathematical mainstream. 
Knots embody, in its purest form, one of the big prob-

lems in topology: to understand the different ways to posi-
tion one geometrical form inside another. In the case of 
knots, the two forms are a circle, representing a closed loop 
of string, and the whole of three-dimensional space. As far as 
topologists are concerned, a knot is a circle that has been 
‘embedded in’ three-dimensional space, in such a manner 
that it cannot be disentangled by continuously deforming 
the surrounding three-dimensional space.

This description is somewhat removed from everyday 
experience, where bits of string have ends and you deform 
the string, not the space. Nonetheless, it captures the ‘knotti-
ness’ of knots rather well, as Colin C. Adams’s The Knot Book
shows. Certain practical aspects of knots, however, do not 
reduce so well to a topological formulation, and a clear case 
in point is the question of knotting two different lengths of 
string together. The main criterion here is that the join should 
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not slip if you pull on the ends of the string. Surface friction 
and the material from which the string is made come into 
play, and the whole problem requires a different approach.

Nonetheless, there exists the beginnings of a mathemat-
ical theory, rather well suited for development by recrea-
tional mathematicians. It is the brainchild of Roger E. Miles 
at the Australian National University, Canberra, and is 
explained in his Symmetric Bends. ‘Bend’ was the word used by 
sailors for a method of knotting ropes together, back in the 
days when ships had sails and virtually everything on board 
was made from either wood or rope; it is still used by sail-
boat enthusiasts. Miles’s main aim is to classify the geometry 
of bends in a systematic way, making it possible to search for 
new ones with desirable properties. The resistance of a given 
bend to slippage under tension can be determined experi-
mentally by tying it and seeing what happens. The result 
offers a new slant on the mathematics of bits of string and 
the twiddly things you can make by wrapping them round 
themselves and each other.

The simplest and best-known bend is the reef (Figure 75a). 
In drawing such diagrams, of course, short breaks in the 
lines indicate which string passes over which; the strings 
themselves remain unbroken. One string is drawn with a 
light line, the other with a heavy one. Miles advocates the use 
of only horizontal and vertical lines, rather than sweeping 
curves, for several reasons: they are easier to draw, easier to 
understand, and they reveal the symmetry of the situation 
better (when there is any). Each string has one ‘free’ end – 
where it terminates – and one ‘standing’ end, shown by 
dotted lines, where it continues elsewhere. This diagram has 



246 | CHAPTER 18

two types of crossing: dark-over-light or light-over-dark. In 
more complex bends, there may also be dark-over-dark and 
light-over-light crossings.

The reef, notoriously, is often confused with the granny 
knot (Figure 75b). In traditional knot theory, where free ends 
do not exist and everything is joined into loops, no other 
knots are closely related to the reef and granny. Straight away 
we discover that the situation is different for bends, for there 
are two further bends which differ from reef and granny – 
but only in the choice of which end is free. They are the 
whatnot and the thief knot (Figures 75c, 75d).

These four ‘elementary bends’ are the ones with the 
simplest diagrams, that is, the fewest crossings. Friction, pre-
venting strings from sliding, is to some extent generated at 
crossings, and intuitively we would expect more complex 
bends to be more secure – though not always, since security 
also depends on how the sequence of crossings fi ts together 
in three dimensions. All four elementary bends are highly 
insecure, and tend to come apart if the strings are pulled or 
otherwise disturbed. The way they come apart is instructive: 

(a) (b) (c) (d)

fig 75 Four simple bends. (a) Reef. (b) Granny. (c) Whatknot. 
(d) Thief knot. Note the difference between free ends (solid) and 
open ends (dotted) which continue the string.
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one string straightens out, though perhaps not completely, 
and then slides through the loops in the other string.

The elementary bends also have an appealing mathemat-
ical property: symmetry. The four bends just introduced 
exhibit three important symmetry operations (Figure 76). If 
the reef knot diagram is fl ipped over, keeping the diagonal 
from lower left to upper right fi xed, then the same diagram 
appears – except that the colours (light/dark) are swapped. 
The same goes for the granny. The whatnot diagram looks 
the same, except for colour, if it is rotated through 180° about 
an axis pointing vertically out of the page. Finally the thief 
knot is symmetric under a ‘central inversion’ of three-
dimensional space, which maps every point to the point on 
the same line through the origin, and the same distance 
away, but on the far side. That is, a point with coordinates 
(x, y, z) maps to (-x, -y, -z). If you tie these bends with real 
string, and tighten them carefully and evenly, the resulting 
bends will possess the same symmetries.

There are more complicated bends too, of course. Indeed, 
Miles says that his interest in symmetric bends started in 
1990, when he became aware of the ‘rigger’s bend’ (Figure 77).
The rigger’s bend also has 180° rotational symmetry. It is 

fig 76 Three symmetry operations. (a) Original. (b) Diagonal fl ip. 
(c) 180° rotation. (d) Central inversion.
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often called ‘Hunter’s bend’ after Dr. Edward Hunter, who 
discovered it in 1978. At the time it was thought to be new (it 
did not appear in the bible of the subject, the Ashley Book of 
Knots) but it can be found in the American mountaineer Phil 
Smith’s Knots for Mountaineering of 1956. Miles fi rst came 
across it in a copy of Mario Bigon and Guido Regazzoni’s The 
Morrow Guide to Knots that he bought in San Francisco in 1989.
By coincidence, it was on the San Francisco waterfront in 
1943 that Smith invented the rigger’s bend.

Based on the above three types of symmetry (diagonal 
fl ip, rotation, central inversion), Miles developed a formalism 
for studying and indeed inventing symmetric bends. An 
example of an entire family of bends found in this way is the 
generalized thief knot (Figure 78). However, there is more. 
There are three more symmetry operations (Figure 79) that 
can be performed on bends in three-dimensional space:

Mirror image: refl ect the bend in a mirror. On a two-
dimensional diagram, with the mirror in the plane of the 
page, this has the effect of reversing the crossings at every 
intersection.

fig 77 Rigger’s bend.
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Colour interchange: swap light and dark colours.
Reverse: interchange the dark standing and free ends, and at 
the same time interchange the light standing and free ends.

Any one of these operations changes a centro-symmetric 
bend to a centro-symmetric bend, and a bend with rotational 
symmetry to a bend with rotational symmetry.

The prize specimen in this context is the ‘rewoven fi gure-
of-eight bend’, otherwise called the ‘Flemish bend’ (Figure 80). 

fig 78 Generalized thief knot.

(a) (b) (c) (d)

fig 79 Three more symmetry operations. (a) Original. (b) Mirror 
image (in plane of paper). (c) Colour interchange. (d) Reverse.
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The fi rst four diagrams show the Flemish bend, its mirror-
image, its reversal, and the reversal of its mirror image. 
All four diagrams are rotationally symmetric. The fi fth 
diagram has a different symmetry: it is centro-symmetric. 
Yet all fi ve diagrams are topologically equivalent, that is, 
they can be continuously manipulated into each other! The 
easiest way to see this is to manipulate the fi fth diagram 
into each of the others: I’ll leave you the fun of fi nding 
out how. So a topological deformation can change the 
symmetry type of a bend, and Miles therefore renamed 
this bend the ‘chameleon’.

(a) (b) (c) (d)

(e)

fig 80 (a) Flemish bend. (b) Its mirror image. (c) Its reversal. 
(d) Reversal of its mirror image. (e) The chameleon.
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Miles’s book includes a catalogue of sixty symmetric 
bends, a selection of which is shown in Figure 81. Is there, he 
asks, a ‘best’ symmetric bend? His answer: ‘not really.’ The 
reason is that bends may be preferred for many different 
features. These include ease of tying, ease of checking that 
they have been tied correctly, ease of adjustment to make the 
free ends longer or shorter, tightness, resistance to jogging or 
tugging, compactness, streamlinedness, strength, ease of 
untying, beauty, charisma . . .

(a) (b) (c) (d)

(h)(g)(f)(e)

fig 81 Eight bends. (a) Tight bend. (b) Tweedledee. (c) Crown bend. 
(d) Threefold. (e) Tweedledum. (f ) Grapevine knot. (g) Surgeon’s 
knot. (h) Pivotal knot.
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FEEDBACK

Mainstream mathematics has taken up the challenge of 

finding a more geometric theory of knots, though in a 

different way. The usual way to study knots topologically is 

in terms of invariants – properties that remain unchanged 

by deformations. Two knots that have different invariants 

must be topologically different. The first important invar-

iant was the Alexander polynomial, discovered in the 1920s 

by J.W. Alexander. This is an algebraic expression associated 

with any knot, and knots whose Alexander polynomials are 

different cannot be deformed into each other. Unfortu-

nately, knots with the same Alexander polynomial need not 

be topologically equivalent, the reef and granny knots being 

the simplest example. A newer topological invariant, the 

Jones polynomial, often succeeds where the Alexander poly-

nomial fails; the Jones polynomial of a reef knot is different 

from that of a granny knot.

 By making the ‘string’ of a knot more like physical string, 

mathematicians have discovered a new invariant, which is 

not a polynomial, but a number. The underlying idea goes 

back to I. Fary in 1929. Imagine tying a knot in a long rubber 

rod. The more complicated the knot, the more you have to 

bend the rod to tie it, so the more elastic energy the knotted 

rod acquires. Physical systems minimize energy, so we can 
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ask what shape for the rubber rod makes the energy as 

small as possible.

 In 1987 S. Fukuhara realized that there is a more conven-

ient physical model: electrostatic energy. Think of the knot 

as a flexible wire of fixed length, which can pass through 

itself if necessary and is charged with static electricity. 

Because like charges repel each other, a knot that is free to 

move will arrange itself to keep neighbouring strands as far 

apart as possible, in order to minimize its electrostatic 

energy. This minimum energy value is the new geometric 

invariant. In 1991, Jun O’Hara of Tokyo Metropolitan Univer-

sity proved that the minimum energy of a knot increases as 

the knot becomes more complicated. Only a finite number of 

topologically different knots exist with energy less than or 

equal to any chosen value. This means that there is a natural 

numerical scale of complexity for knots, ranging from simple 

knots at the low-energy end to more complicated ones 

higher up.

 What are the simplest knots? In 1993 a team of four 

topologists – Steve Bryson, Michael Freedman, Zhenghan 

Wang, and Zheng-Xu He – proved that the simplest ‘knots’ 

are exactly what you would expect. They are ‘round circles’, 

that is, circles in the everyday sense. Topologists, whose 

‘circles’ are usually bent and twisted, have to append an 

adjective to remind themselves when they’re not. In natural 

units, the energy of a round circle is 4, and all other closed 

loops have higher energy. Any loop with energy less than 

6p + 4 is topologically unknotted – it is a bent circle. More 
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generally, a knot with c crossings in some two-dimensional 

picture has energy at least 2pc + 4, though this bound is 

probably not the best possible, as the lowest-known energy 

for a trefoil knot – which has three crossings – is about 74, a 

lot bigger than 6p + 4 = 22.84. The number of topologically 

distinct knots with energy less than or equal to E is at most 

0.264 ´ 1.658E.
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Combinatorics is the art of counting 

things without actually listing them – 

usually because the lists would be too 

big to fit inside the current Universe. 

One of the major open problems in 

recreational mathematics is to count 

the magic squares of a given size. For 

an important class of squares, we now 

know the answer.

19
Most-Perfect Magic 

Squares



I
’VE ALREADY MENTIONED magic squares several times, but 
let’s recap. Take, say, the consecutive whole numbers from 
1 to 16 and arrange them in a 4 ´ 4 array so that every 
row of four numbers, every column, and the two diag-

onals all add up to the same total. If you succeed – Figure 82
shows an example – you’ve made a magic square of order 4,
and the common total is its ‘magic constant’. Here the magic 
constant is 34, as it must be for all magic squares formed 
from the integers 1–16. If you do the same with the numbers 
from 1 to 25 in a 5 ´ 5 array, you’ve got a magic square of 
order 5, and so on. Magic squares are a favourite topic in 
recreational mathematics, and it is in the nature of favourite 
topics that they never become exhausted. Despite the vast 
literature on magic squares – and I mean vast – it always 
seems possible to put a new spin on the concept.

What is much harder, though, is to make a fundamental 
new contribution to the basic mathematics of the topic – one 
that goes beyond solely recreational interests and impinges 
upon the mathematical mainstream. Just such a contribu-
tion was published in 1998 by Dame Kathleen Ollerenshaw 
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and David S. Brée as Most-Perfect Pandiagonal Magic Squares: 
Their Construction and Enumeration.

In it they obtained the fi rst signifi cant partial solution of 
one of the big open problems in the subject: to count how 
many magic squares there are of any given order. Their main 
result is an explicit formula for the number of so-called 
‘most-perfect’ squares of given order, together with system-
atic methods for constructing them all. In case this sounds 
like an easy problem, it is worth pointing out that the number 
of such squares of order 12 is more than 22 billion, while for 
order 36 it is roughly 2.7 ´ 1044. You don’t ‘count’ magic 
squares by writing them all out and chanting ‘1, 2, 3, . . .’.

Their work belongs to the area of mathematics known as 
combinatorics – the art of counting things without listing 
them. The result may have practical implications; indeed, 
the original stimulus came from potential applications of 
8 ´ 8 magic squares to photographic reproduction and image 
processing.

A noteworthy feature of the research is its context, for 
neither author is a typical research mathematician. Dame 
Kathleen (the honour was awarded in 1971 for services to 
education) reached the age of 97 in October 2009, and spent 

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

fig 82 A 4 ´ 4 magic square. All rows, columns, and diagonals sum 
to 34. Moreover, opposite pairs of numbers, relative to the centre, 
sum to 17.
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most of her professional life in education and the upper 
reaches of university administration. Her collaborator David 
Brée has held positions in business studies, psychology, and 
most recently artifi cial intelligence.

For mathematical purposes it is more convenient to build 
a magic square of order n from the integers 0, 1, 2, . . ., n2−1
rather than the traditional 1, 2, 3, . . ., n2, and both the book 
and this chapter employ that convention. If you add 1 to 
every entry in a mathematician’s magic square you get a 
traditional one, and conversely if you subtract 1 from every 
entry in a traditional magic square you get a mathematician’s 
one. Thus there is no essential difference between the two 
conventions except for the square’s magic constant, which is 
increased or diminished by n.

The magic constant of a traditional square of order n is 
½n(n2 + 1). That of a mathematical magic square of order n is 
½n(n2 − 1). There is a single magic square of order 1, namely

0.

There is no magic square of order 2 (the only order that 
never occurs) because the conditions force all four entries to 
be equal. There are eight magic squares of order 3, but they 
are all rotations or refl ections of just one square

1 8 3
6 4 2
5 0 7

with magic constant 12. Obviously a rotation or a refl ection 
of a magic square remains magic, so all magic squares of 
order 3 are ‘essentially the same’. According to Chinese 
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legend, the ‘traditional’ version of the above square (using 
the numbers 1–9, and known as the lo-shu) dates from around 
2400 bc, where it was observed on the back of a turtle by the 
legendary Emperor Yu. Scholars consider this date to be 
questionable, and ad 1000 may well be more accurate.

There are 880 essentially different magic squares of order 4,
an impressive 275,305,224 of order 5, and the number explodes 
as the order increases. No exact formula is known. By ‘essen-
tially different’ I mean ‘ignoring rotations and refl ections’.

One way to make progress is to impose further condi-
tions. For our purposes the most natural such condition is 
that the square should be pandiagonal, which means that all 
‘broken diagonals’ must also sum to the square’s magic 
constant. (Broken diagonals ‘wrap round’ from one edge to 
the opposite edge, Figure 83.) An example of a pandiagonal 
magic square is

0 11 6 13
14 5 8 3
9 2 15 4
7 12 1 10

with magic constant 30. Typical broken diagonals here are 
11 + 8 + 4 + 7 and 11 + 14 + 4 + 1, both of which do indeed equal 
30. There are 48 essentially different pandiagonal squares of 
order 4, and 3600 of order 5.

The order 3 square is not pandiagonal: for example 8 + 2 +
5 = 15, not 12. More generally, Andrew H. Frost proved in 1878
that any even-order pandiagonal magic square must be 
‘doubly even’, that is, a multiple of 4. A much slicker proof 
was given by C. Planck in 1919 – see Ollerenshaw and Breé’s 
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book. Odd-order pandiagonal magic squares exist for all 
orders greater than 3.

Most-perfect squares, named by Emory McClintock in 
1897, are even more restricted. As well as being magic and 
pandiagonal, they also have the property that any 2 ´ 2 block 
of adjacent entries give the same total, namely 2n2−2, where 
n is the order. Here we include 2 ´ 2 blocks that ‘wrap round’ 
from one edge to the opposite edge. It can be shown that any 
magic square with this property of 2 ´ 2 blocks is necessarily 
pandiagonal, but the converse is false.

The order 4 square above is most perfect – for example 
0 + 11 + 14 + 5 = 30, and 8 + 3 + 15 + 4 = 30, and so on. 
An example of a 2 ´ 2 block that wraps round from one edge 
is the block 3, 4, 14, and 9.

More ambitiously, the order 12 square shown in Figure 84
is most perfect.

fig 83 Broken diagonals.
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The key to Ollerenshaw and Brée’s counting method is a 
connection between most-perfect squares and ‘reversible 
squares’. To explain what these are, we need some termin-
ology. A sequence of integers has reverse similarity if, when 
the sequence is reversed and pairs of corresponding numbers 
are added, the totals are all the same. For example 1 4 2 7 5 8
has reverse similarity, because its reversal is 8 5 7 2 4 1 and the 
sums of corresponding numbers 1 + 8, 4 + 5, 2 + 7, 7 + 2,
5 + 4, and 8 + 1 are all equal – in this case to 9. A reversible 
square of order n is an n ´ n array formed by the integers 0, 1,
2, . . . , n2-1 with the following properties:

• Every row has reverse similarity.
• Every column has reverse similarity.

64 92 81 94 48 77 67 63 50 61 83 78

31 99 14 97 47 114 28 128 45 130 12 113

24 132 41 134 8 117 27 103 10 101 43 118

23 107 6 105 39 122 20 136 37 138 4 121

16 140 33 142 0 125 19 111 2 109 35 126

75 55 58 53 91 70 72 84 89 86 56 69

76 80 93 82 60 65 79 51 62 49 95 66

115 15 98 13 131 30 112 44 129 46 96 29

116 40 133 42 100 25 119 11 102 9 135 26

123 7 106 5 139 22 120 36 137 38 104 21

124 32 141 34 108 17 127 3 110 1 143 18

71 59 54 57 87 74 68 88 85 90 52 73

fig 84 Order 12 most-perfect magic square.
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• The sums of entries in the opposite corners of any 
rectangle are equal.

For instance, the array of integers in ascending order from 
left to right given by

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

is reversible. In the third row, for example, we have 8 + 11 =
9 + 10, 10 + 9 = 11 + 8 = 19, and the same kind of pattern holds 
for all other rows and all columns (though with totals other 
than 19). Moreover, equations such as 5 + 11 = 7 + 9 and 1 + 15
= 3 + 13 verify the third condition. A less trivial reversible 
square of order 12 is shown in Figure 85.

Reversible squares are generally not magic, as this example 
shows. However, Ollerenshaw and Brée show that every 
reversible square of doubly even order can be ‘transformed’ 
into a most-perfect magic square by a specifi c procedure, 
and every most-perfect magic square arises in this manner.

We illustrate the method on the above example. There are 
three steps:

1. Reverse the right-hand half of each row:

0 1 3 2
4 5 7 6
8 9 11 10
12 13 15 14
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2. Reverse the bottom half of each column

0 1 3 2
4 5 7 6
12 13 15 14
8 9 11 10

3. More complicated! For the order 4 case, it can be stated 
like this. Break the square up into 2 ´ 2 blocks. Move the four 
entries in each such block as shown in Figure 86. That is, the 
top left entry stays fi xed, the top right moves diagonally two 
squares, bottom left moves two spaces to the right, and 
bottom right moves two spaces down. If anything falls off 

64 51 81 49 48 66 65 83 82 50 80 67

28 15 45 13 12 30 29 47 46 14 44 31

24 11 41 9 8 26 25 43 42 10 40 27

20 7 37 5 4 22 21 39 38 6 36 23

16 3 33 1 0 18 17 35 34 2 35 19

72 59 89 57 56 74 73 91 90 58 88 75

68 55 85 53 52 70 69 87 86 54 84 71

124 111 141 109 108 126 125 143 142 110 140 127

120 107 137 105 104 122 121 139 138 106 136 123

116 103 133 101 100 118 117 135 134 102 132 119

112 99 129 97 96 114 113 131 130 98 128 115

76 63 93 61 60 78 77 95 94 62 92 79

fig 85 Order 12 reversible square.
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the edge of the 4 ´ 4 square, ‘wrap the edges round’ to fi nd 
where it should go. For the general order n case, there is a 
similar recipe expressed by a mathematical formula. The 
result here is:

0 14 3 13
7 9 4 10
12 2 15 1
11 5 8 6

which you can check is indeed most perfect and magic.
There is a transformation process of this general type, 

setting up a one-to-one correspondence between most-
perfect magic squares and reversible squares, for any doubly 
even order. Therefore you can count how many most-perfect 
magic squares there are, of a given doubly-even order, by 
instead counting how many reversible squares there are.

At fi rst sight, this change in the nature of the problem 
doesn’t get you very far, but it turns out that reversible squares 
have several nice features that makes it possible to count 
them systematically. In particular, reversible squares fall 

fig 86 Transforming a reversible square to a magic one.
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naturally into classes. Within each class, all members are 
related to each other by a variety of transformations, such as 
‘rotate’, ‘refl ect’, ‘swap complementary pairs of rows’, and a 
few more complicated manoeuvres. In order to construct all 
members of such a class, it is enough to construct just one of 
them and then routinely apply the transformations. Further-
more, each class contains precisely one special square, said 
to be ‘principal’, in which the top row starts with 0 1 and the 
integers in any row or column are in ascending order – so all 
you need to do is fi nd that one.

Finally, each class has the same size. In fact, counting rota-
tions and refl ections of a given square as being ‘essentially 
the same’ and therefore not distinguishing between such 
squares, it can be proved that the number of essentially 
different squares in any class is

2n−2([n/2]!)2.

Here the exclamation mark indicates ‘factorial’, so that for 
example 6! = 6 ´ 5 ´ 4 ´ 3 ´ 2 ´ 1 = 720. It thus remains only 
to count the number of principal reversible squares of given 
order, and multiply that number by the formula just stated. 
The result will be the number of essentially different most-
perfect magic squares of that order.

The number of principal reversible squares can itself be 
stated as a formula, though a rather complicated one. The 
discovery of this formula, and its proof, leads deeper into 
combinatorics, so I’ll stop here, except to say that for doubly 
even orders n = 4, 8, 12, 16 the number of essentially different 
most-perfect magic squares is 48, 368,640, 2.22953 ´ 1010, and 
9.32243 ´ 1014. The last two numbers are stated approximately 
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here, but can be computed exactly. The number of essentially 
different most-perfect magic squares of order 144, inciden-
tally, is 4.34616 ´ 10254, and again it is possible to write down 
all 255 digits if you really want to (computer assistance helps 
here).

FEEDBACK

Tom Hagedorn at the College of New Jersey sent me two 

articles about magic rectangles. A magic rectangle is an 

m ´ n array of square cells, filled with the integers from 1 to 

mn, arranged so that every row has the same sum and every 

column has the same sum. There is no requirement for the 

row sum to equal to column sum; in fact this is impossible if 

m and n are different. Moreover, diagonals are ignored. It 

has been known for more than a century that magic rectan-

gles exist whenever m and n have the same parity (that is, 

they are both even or both odd), are bigger than 1, and are 

not both 2. Hagedorn generalizes this idea to higher dimen-

sions, showing that if all the sides of the n-dimensional 

‘rectangle’ are even, a magic rectangle exists.

The odd case is much harder. When I wrote the column in 

1999 it was not known whether a 3 ´ 5 ´ 7 magic rectangle 

exists. That is: can you put the numbers 1 to 105 into a 
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2 89 63 7041

57 94 29 5431

59 38 93 3540

78 9 45 9934

85 18 92 2248

11 67 24 8776

79 56 25 4101

55 20 91 6237

83 26 100 1046

16 33 8 103105

74 53 42 3264

3 73 1 9098

96 80 60 236

44 86 69 5115

102 50 5 2781

19 39 30 9582

84 88 58 2114

7 97 72 2861

71 68 66 4713

52 12 75 4977

35 17 65 10443

fig 87 The 3 ´ 5 ´ 7 magic rectangle.

3 ´ 5 ´ 7 grid so that all horizontal rows have the same 

sum, all horizontal columns have the same sum, and all 

vertical columns have the same sum? These three sums 

may (must!) be different. The problem remained open until 

2004 when Mitsutoshi Nakamura found such an arrange-

ment (Figure 87).
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Angle-trisectors and circle-squarers tend 

to get annoyed when mathematicians 

send back their work, saying that (a) it ’s 

wrong, and (b) no, they haven’t read it to 

find the mistake. This is understandably 

annoying. It is also perfectly fair and 

entirely sensible. In mathematics, you 

can prove a negative.

20
It Can’t be Done!



I
N EVERYDAY LIFE, when we say something is impossible, 
we often don’t mean that. Not literally, not absolutely. 
What we mean is that we can’t see any way to achieve it. 
A lot of people thought that it was impossible for 

machines heavier than air to fl y, and before that a lot of 
people thought that it was impossible for machines heavier 
than water to fl oat – proving yet again that we never learn 
from history. Human ingenuity often overcomes apparent 
impossibilities. But even in everyday life, we can be  confi dent 
that some things are impossible – human beings surviving 
unaided underwater for a year, say. (With suitable equip-
ment, that’s another matter.) And there’s a grey area of 
things that most of us consider impossible but some believe 
in passionately, such as the ability to read another person’s 
mind.

In mathematics, though, impossibility is something you 
can often prove. For instance, 3 is not an integer power of 2.
One way to prove this is to ask what the power is, and 
observe that 21 is too small and anything from 22 upwards is 
too big.
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It is true that the Bursar in Terry Pratchett’s Discworld 
fantasy series believes that there is an extra whole number, 
‘umpt’ – as in ‘umpty-two’ – but Roundworld mathemat-
icians disagree. As this shows, impossibility proofs function 
only within the world of mathematics as it is currently set 
up: if you change the rules of the game, different things may 
happen. For example, in the world of integers ‘modulo 5’, in 
which any multiple of 5 is considered to be zero, then 3 = 23.
But that doesn’t mean that my original impossibility state-
ment is wrong, because the context has changed. It just 
means I have to be careful to defi ne what I’m talking about. 
In textbook mathematics, that’s very important, but in the 
Mathematical Recreations column I take a more relaxed 
approach, knowing that my readers (usually . . .) realize that I 
could be more precise if I wanted to.

This ability of mathematics to prove certain tasks impos-
sible has a side-effect that can be frustrating. Imagine that I 
have spent the last ten years fi lling notebooks with long 
calculations, and I convince myself that I have discovered a 
new prime number, several thousand digits long. Unlike any 
other known prime, though, this one is even. Its fi nal digit, in 
ordinary decimal notation, is 6. Excited beyond measure by 
this amazing feat, I send my work to a mathematician – who 
immediately sends it back again telling me that it’s nonsense. 
Worse, when I ask him where I’ve made a mistake, he says 
that he hasn’t read my work and he has no idea where the 
mistake is, but he knows that there must be one. I am 
appalled: what arrogance! I spent ten years on this problem; 
he spends ten minutes, ignores almost everything I’ve 
written, and yet claims he knows I’m wrong!
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In most areas of everyday life, that would indeed be 
 arrogance. But in mathematics, it is no more than a simple 
application of logic. The only even prime number is 2. There 
are no others. Why? Because even numbers are divisible by 
2, and no prime exactly divides a different prime.

Kurt Gödel’s proof that mathematics is undecidable – there 
is no algorithm for fi nding out whether a given statement 
has a valid proof – is one of the most profound impossibility 
theorems. Another big one comes from the nineteenth 
century, when Niels Henrik Abel, and later Évariste Galois, 
proved that the general equation of the fi fth degree cannot 
be solved by a formula involving only the ordinary opera-
tions of algebra and the extraction of roots. Square roots, 
cube roots, fourth roots, whatever. Such expressions are 
called ‘radicals’. Mathematicians of earlier ages had formulas 
in radicals for equations of the second, third, and fourth 
degree. Most of us learn the formula for the second degree 
(‘quadratic’ equations) at high school, which involves a 
square root; there are similar but increasingly complicated 
formulas for the third and fourth degree. All attempts to fi nd 
a similar formula for the fi fth degree failed.

Abel and Galois put a stop to such attempts by proving 
that they could never succeed. Abel’s proof was a model of 
ingenuity; Galois’s proof was more systematic, and required 
the creation of a new branch of mathematics, now known as 
Galois theory. Earlier, the Italian mathematician Paolo 
Ruffi ni had published a 500-page proof of the impossibility, 
and later published what he claimed was a simpler – though 
still gigantic – proof, but no one seemed convinced that there 
were no errors. Ironically, we now know that there was only 
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one serious gap, and Abel fi lled it as part of his proof, without 
realizing that it completed Ruffi ni’s.6

In order to see how such proofs are possible, consider a 
well-known puzzle. A chessboard has 64 squares. If you take 
32 dominoes, each formed from two squares the same size as 
those of the chessboard, then there are enormously many 
ways to tile the board with dominoes – one is shown in 
Figure 88a. If you remove two adjacent corners of the board, 
you can easily tile the result with 31 dominoes – an example 
is Figure 88b. Throughout, I’m assuming as part of the condi-
tions of the puzzle that each domino’s squares coincide with 
two adjacent squares of the board, by the way. However, if 
you remove two diagonally opposite corners of the board 
(Figure 88c), all attempts to tile the result with dominoes 
fail.

Does your repeated failure prove that the task is impos-
sible? No. Not even if you spent a lifetime trying. Is it impos-
sible? Yes.

6 For the history and context, see my book Why Beauty is Truth.

(a) (b) (c)

fig 88 Boards (a) and (b) can be tiled with dominoes – for example, 
as shown. What about (c)?
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How can I be so sure?
Here’s why. If you fi t a domino on a chessboard, it always 

covers one black square and one white one. So, if you tile a 
board with dominoes, the number of white squares must be 
equal to the number of black squares. This is the case for the 
fi rst two boards, but not for the one with opposite corners 
removed, which has 30 squares of one colour and 32 of the 
other.

This puzzle has a basic element in common with Galois’s 
proof of the insolubility by radicals of the equation of the 
fi fth degree. (Abel’s proof does not fi t quite so neatly into this 
framework.) Namely, the introduction of an invariant. This is 
some feature of a hypothetical solution that can be calculated 
without knowing the detailed form of that solution. For the 
domino problem, the invariant is a simple one: equality of 
black and white squares. For the fi fth degree equation, it is a 
sophisticated algebraic feature of the symmetries of the roots 
of the equation, called the Galois group. If the invariant does 
not fi t the conditions of the problem, whatever the proposed 
solution might be, then the proposed solution must fail. And 
you can tell that without even seeing the proposed solution!

If the invariant’s wrong, your solution’s wrong. That’s 
it, there’s no way out. It doesn’t matter what your solution 
looks like.

Galois theory and recreational mathematics meet in a 
beautiful area of geometry: constructions using only an 
unmarked ruler and a compass.7 A construction starts from 

7 Technically, the instrument concerned is a ‘pair of compasses’, but 
like a ‘pair of scissors’ this refers to a single gadget. A compass is a device 
that points north. But we must move with the times. And I was once 
asked why the constructions needed two compasses. . .
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some known set of points, and successively locates new 
points as intersections of lines or circles. Any lines used must 
join known points, and any circles must be centred on a 
known point and pass through another known point.

What problems can be solved by such constructions? You 
can, for example, divide a given line segment into any speci-
fi ed number of equal pieces. You can divide a given angle 
into two equal angles (bisection), therefore also four equal 
parts, 8, 16, . . . , any power of two. You can draw regular poly-
gons with 3, 4, 5, 6, 8, 10, and 12 sides. All this was known to 
Euclid. Over the next two millennia, many people tried to 
solve three other simple-looking problems by the same 
method:

• Duplicating the Cube: construct a cube whose 
volume is twice that of a given cube.

• Trisecting the Angle: trisect a given angle (cut it 
into three equal pieces).

• Squaring the Circle: construct a square whose area 
is equal to that of a given circle.

We now know why they had so much trouble: all three prob-
lems ask for the impossible.

We’re not seeking approximate constructions here – it is 
straightforward to solve all three to any required degree of 
approximation. Nor are we asking for constructions that 
relax the conditions or employ other instruments. Figure 89
shows how to trisect an angle using either a marked ruler or 
a ‘tomahawk’.

Again, the fact that nobody found an answer proves 
nothing. In 1796 Carl Friedrich Gauss discovered a ruler-and-
compass construction for the regular 17-sided polygon which 
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had eluded all of his predecessors. Similar methods construct 
regular polygons of 257 and 65,537 sides. Strange numbers – 
why these? What else is possible? What isn’t?

Specifi cally: what is the invariant for ruler-and-compass 
constructions?

Any such construction can be represented in coordinate 
form, and corresponds to the calculation of a sequence of 
numbers, the coordinates of the points involved. Every step 
in the construction turns out to introduce numbers that are 
related to the known ones by an algebraic equation of degree 
either 1 or 2 (1 for line-meets-line, 2 if a circle is involved). 
This means (with some work) that the ‘degree’ of any point 
in the construction – the lowest degree equation of which it 

B
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C
X

Y

O
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D

X

Q

P

R

(b)(a)

fi g 89 Trisecting angle AOB. (a) With marked ruler. Draw a circle 
centre B through O. Draw BC parallel to OA. Mark X and Y on a ruler 
with XY = OB. Slide the ruler until it passes through O, X is on the circle 
and Y is on BC. Then angle AOY is one third of angle AOB. (b) Make a 
tomahawk: a semicircle with diameter PR, extend PR to Q where PQ is 
one half of PR, and PD perpendicular to PR. Arrange the tomahawk so 
that PD passes through O, Q lies on OB, and OA is tangent to the semi-
circle (at X). Then angle POQ is one third of angle AOB.
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is a solution – must be a power of 2. This is the simplest 
invariant, and it is good enough to kill off all three problems 
listed above.

Duplicating the cube is equivalent to solving the equation 
x3−2 = 0, which is of the third degree. Since 3 is not a power 
of 2, this is impossible.

Trisecting an angle is also equivalent to solving an equa-
tion of the third degree. (This follows from trigonometry 
and the equation cos 3x = 4 cos 3 x − 3 cos x.) So this is also 
impossible.

Squaring the circle is equivalent to fi nding an equation, 
whose degree is a power of 2, that is satisfi ed by p. But 
(a diffi cult theorem proved by Ferdinand Lindemann in 1882)
p does not satisfy an equation of any degree. (By the way, 
x−p = 0 doesn’t count here. The coeffi cients must be related 
to the coordinates of the starting points.)

This, then, is how mathematicians know that it is a waste 
of time to try to solve any of these three problems using an 
unmarked ruler and compasses. If you want more details, see 
my textbook Galois Theory. Unfortunately, the existence of an 
impossibility proof does not stop people trying – probably 
because of a misunderstanding of the nature of mathemat-
ical impossibility. Underwood Dudley’s fascinating book A
Budget of Trisections records many such attempts.

The sad thing here is that trying to trisect the angle with 
ruler and compass is equivalent – via the invariant just 
described – to attempting to prove that 3 is an integer power 
of 2. Do you really want to go down in history as someone 
who thought they had proved that?
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There are lots of ways to use 

mathematics, and to teach it. But 

here’s an approach that had never 

occurred to me until its inventors told 

me about it. Unlike most mathematical 

recreations, this one is social. In fact, it 

sometimes needs ten people. Dancing.

21
Dances with 
Dodecahedra



I
N CHAPTER 14 we took a new look at the ancient art 
of string fi gures – a topic that typically appeals to the 
mathematically minded, even though it isn’t overtly 
mathematical. My confi dence that the topic really was

mathematical was to some extent justifi ed by communica-
tions from readers, some of which are reported in the Feed-
back section of that chapter. One letter, however, raised a 
topic that was very different from anything I had anticipated: 
connections between string fi gures, mathematics, and dance. 
This was so interesting that it became a Mathematical Recre-
ations column in its own right.

There are plenty of connections between mathematics 
and the arts – the use of perspective in painting and the ratios 
that occur in musical scales, for example – but the only link 
between mathematics and dance that I’ve seen before is an 
analysis of the symmetries of English country dancing 
carried out some years ago by my colleague Chris Budd, a 
mathematics professor at the University of Bath. The letter 
told me about something very different: the conscious use of 
mathematics to create new dances. It was from Karl Schaffer, 
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Co-Artistic Director of the Dr. Schaffer and Mr. Stern Dance 
Ensemble, Santa Cruz, and it described dances constructed 
around the use of several loops of string to create regular 
polyhedra and other mathematical fi gures.

Schaffer started by saying that he and Scott Kim had 
become interested in the topic of polyhedral string fi gures 
because in 1994 they had created a dance performance 
‘Through the Loop, In Search of the Perfect Square’, which 
they performed in Bay Area K-8 schools. This is one of fi ve 
mathematical dance shows produced by the company 
around that time, all of them bringing mathematical ideas to 
a youthful audience in a surprising and non-threatening 
context. Scott Kim, by the way, is a familiar name to long-
term readers of the Mathematical Games column: Martin 
Gardner based a column on Kim’s invention of calligraphic 
art in which the same arrangement of ‘letters’, read right way 
up or upside down, leads to different – often opposite – 
words.

The development of the show involved a local string fi gure 
enthusiast, Greg Keith, who taught them some traditional 
two-person string fi gure dances. They soon developed new 
ideas of their own, including three-dimensional string 
patterns based on polyhedra. In January 1998 they presented 
some of their work at Gardner Gathering III, a conference 
held in Atlanta in Gardner’s honour.

As a simple example, Figure 90 shows how two dancers 
can produce a string tetrahedron (with two edges doubled) 
using a single loop of rope. The fi rst dancer stands to the left, 
the second to the right, with the loop passing between them. 
Each holds the end of the loop in their right hand, while 
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grasping both strands a little further along with their left 
hand. Simultaneously, dancer 1 crosses his right hand over 
his left, while dancer 2 separates her left and right hands. 
Then both reach forward with their right hands until they 
almost touch (Figure 90a). Next, each uses the right hand to 
grasp one strand of the other’s rope, while continuing to 
hold on to their own portion of rope. Then dancer 1 slides his 
right hand along the double strand that it now holds, towards 
its natural position on his right, so that the rope looks like 
Figure 90b. Finally, both dancers raise their right hands and 
lower their left hands, and the result is a regular tetrahedron 
(Figure 90c) in which two sides are double strands and the 
other four are single strands.

In the same way, but with more left to your imagination, 
Figure 91 shows how six dancers, holding six loops of rope or 
ribbon, can produce the semi-regular polyhedron known as 
a ‘cuboctahedron’, which has six square faces and eight tri-
angular faces. Figure 92 illustrates how the rope moves (but 
not the dancers!) for a more elaborate sequence. The dance 
begins with a single (long) loop, held by three people, which 
starts as a triangle and is manipulated fi rst into a tetrahedron 
and then into an octahedron (a solid with eight triangular 
faces). Now a fourth dancer joins in, and helps to transform 

(a) (b) (c)

fig 90 Two-person tetrahedron dance.
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fig 91 Six-person cuboctahedron dance.

fig 92 Three/four/ten-person dance through all the regular 
polyhedra.
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the octahedron into a cube. Finally, six more dancers join the 
dance, and the cube becomes fi rst a dodecahedron (twelve 
pentagonal faces) and then an icosahedron (twenty tri-
angular faces). All fi ve Platonic solids (tetrahedron, cube, octa-
hedron, dodecahedron, and icosahedron) are represented.

Schaffer remarks that sequences of transformations of this 
kind are easier to discover using actual strings than by 
making drawings on paper. Moreover, the search for new 
forms and transformations is necessarily a group activity, 
because you need enough hands to hold the strings. Usually 
each vertex of the polyhedron is held by only one hand, 
which is why ten people are need to form a dodecahedron 
with its twenty vertices. Arranging the participants so that 
the shape they are constructing can actually be seen by 
anybody else is decidedly tricky, though.

Experiments of this kind are good fun for a class of school 
students, and they provide a gentle introduction to three-
dimensional thinking. At a deeper level, they can be used to 
develop serious mathematical ideas. For example, keeping 
track of which edges have to be doubled leads to a considera-
tion of ‘Euler cycles’ in graphs. Recall that a graph is a collec-
tions of nodes linked by edges, and an Euler cycle is a closed 
path that passes along every edge. Here the nodes are the 
hands of the participants, and the edges are the edges of the 
polyhedron being made – realized physically by sections of 
rope. However, in the dances a single edge of a polyhedron 
sometimes corresponds to two or more strands of rope. 
Why? Can’t it be done with only one strand per edge?

The answer, in general, is ‘no’. Suppose for the sake of 
illustration that there is only one loop of rope. Then the 
rope forms a closed cycle that traverses every edge of the 
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polyhedron. In 1735 Leonhard Euler encountered this ques-
tion in connection with a famous puzzle: the Bridges of 
Königsberg. In the river Pregel, which fl ows through Königs-
berg, there are two islands. At that time, seven bridges linked 
the islands to the riverbank and to each other, as shown in 
Figure 93. The townspeople, so it is said, had spent many 
years trying to fi nd a walking tour that passed over each 
bridge exactly once. Euler proved that no such path exists.

How? Euler’s proof was symbolic, but can be interpreted as 
considering the four landmasses – two islands, two river-
banks – to be nodes, and the seven bridges to be edges, thereby 
turning the problem into a graph, or network. Then he proved 
that if such a cycle is required to pass along each edge of the 
graph exactly once, then an even number of edges must meet 
at every vertex. The key idea is that whenever the cycle 
encounters a node along one edge it must leave it along 
another, so the edges that meet that node fall into pairs – and 
so must be even in number. This condition fails for the Königs-
berg bridges, therefore no solution to the puzzle exists.

fig 93 Euler’s Königsberg bridges puzzle.
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More signifi cantly, Euler also proved the converse: for any 
connected (all in one piece) graph with the evenness prop-
erty, a closed cycle passing along each edge exactly once 
always exists. Here his idea is to start by creating some closed 
cycle. If it happens to miss some edges, you can add these in 
by modifying the cycle so that it includes extra ‘detours’. 
The evenness condition ensures that no detour ever gets 
‘stuck’, unable to rejoin the original cycle. Continue adding 
detours until all edges have been included . . . Done!

This theorem lets us make sense of the doubled edges that 
turn up in the dances. Take the dodecahedron as an example. 
Here there are twenty nodes, the vertices, linked by thirty 
edges. Three edges (an odd number) meet at each vertex, so 
there cannot be a cycle in which each edge is traversed only 
once. However, if an edge is doubled up, then the vertex at 
each end is now met by four edges, which is even. Can you 
fi nd ten edges which, when doubled up, produce an even 
number at every vertex? If not, you could double all edges: 
then six meet at every vertex. But do you really need that 
many? Incidentally, the dodecahedron in Figure 92 uses 
neither of these approaches, mostly because it involves three-
fold rotational symmetry.

String loop dances can be used to illuminate many other 
areas of mathematics – simple ideas about three-dimensional 
geometry and symmetry, for instance. But your educational 
aims don’t need to be as worthy as that: these dances are also 
enormous fun. In particular, they’re great for breaking the 
ice at parties.
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Penrose, Roger 121
Penrose maps 121
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Peregrine, Howell 152, 156
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periodic motion 57
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primorials 43
Princeton University 29–30
probability theory 12, 161, 162,

163–5, 167–77
Bayes’ theorem 168–9, 171,

172–3, 176–7
boy and girl distribu-

tion 164–6, 166 Fig. 49,
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Science Museum, London 220
self-organized criticality 232, 235
self-referential statements 180–1,

186
Sherman, Mark A. 216
Shi, X. D. 155, 157–8, 158 Fig. 48



Index | 305

Shishido, Yukio 216
similarity solutions 155–6, 158
Smith, Phil 248
Snow, Peter 237
Snyder, Hartland 107
Sophocles 2
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Fig. 45
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pick-and-mix principle 74–5,
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79 Fig. 23
time barrier 118
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Whatknot 246 Fig. 75
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Penrose map 121–2, 122 Fig. 34
singularities 121
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119 Fig. 33
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